Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (20): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.020.001
  研究快报 |
具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*
娄冬冬1, 张丽莎1,2, 王海风1, 陈志钢1
1 东华大学纤维材料改性国家重点实验室,上海 201620;
2 东华大学环境科学与工程学院,上海 201620
Synthesis of Three-dimensional Network-structured g-C3N4/rGO/Pd Composites with Excellent Visible-light Photocatalytic Performances
LOU Dongdong1, ZHANG Lisha1,2, WANG Haifeng1, CHEN Zhigang1
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620;
2 College of Environmental Science and Engineering, Donghua University, Shanghai 201620
下载:  全 文 ( PDF ) ( 2334KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨相氮化碳(g-C3N4)已经被认为是一种高效的非金属半导体光催化剂。为进一步优化其光催化性能,通过热解-水热两步法制备了三维网状结构的g-C3N4/还原氧化石墨烯(rGO)/钯纳米颗粒(Pd NPs)复合材料。该复合材料由大量超薄片组成,而且薄片上有大量直径约为10 nm的Pd NPs。g-C3N4/rGO/Pd NPs复合材料展现了一个宽的可见光吸收(边~460 nm),其在460~800 nm波长范围内还有一个随波长增加的光吸收。经可见光(λ>400 nm)照射140 min后,g-C3N4/rGO/Pd NPs复合材料可降解90%罗丹明B(RhB)。此外,循环实验表明g-C3N4/rGO/Pd NPs复合材料具有良好的稳定性。因此,g-C3N4/rGO/Pd NPs复合材料有望成为一种高效稳定的光催化剂,在水污染处理领域具有潜在的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
娄冬冬
张丽莎
王海风
陈志钢
关键词:  石墨相氮化碳  还原氧化石墨烯  钯纳米颗粒  光催化  可见光    
Abstract: Graphitic carbon nitride (g-C3N4) has been considered as an efficient metal-free semiconductor photocataltyst. To further improve its photocatalytic activity, we have prepared the three-dimensional network-structured g-C3N4/reduced graphene oxi-de (rGO)/palladium nanoparticles (Pd NPs) composites by the pyrolysis-hydrothermal two-step method. The composite consists of ultrathin sheets which are decorated with Pd NPs (diameter:~10 nm). g-C3N4/rGO/Pd NPs composite shows a broad absorption with an edge at ~460 nm and then an enhanced photoabsorption with the increase of wavelength (460—800 nm). The photocatalytic activity of g-C3N4/rGO/Pd NPs composites was measured by the degradation of RhB solution. Under the irradiation of visible-light (λ>400 nm), g-C3N4/rGO/Pd NPs composites can degrade 90% RhB in 140 min. In addition, the cycling experiment demonstrates that the composite possesses good photocatalytic stability. Therefore, g-C3N4/rGO/Pd NPs composites displays a potential as an efficient and stable photocatalyst for water-purification application.
Key words:  graphitic carbon nitride    reduced graphene oxide    palladium nanoparticles    photocatalysis    visible light
               出版日期:  2017-10-25      发布日期:  2018-05-05
ZTFLH:  TB321  
基金资助: *国家自然科学基金(21477019);中央高校基本科研业务费专项资金;东华大学励志计划
作者简介:  娄冬冬:男,1989年生,硕士研究生,主要从事光催化材料合成及性能研究 E-mail:loudongdong1989@163.com 张丽莎:通讯作者,女,1980年生,副教授,主要从事新型光催化材料的开发与利用 E-mail:lszhang@dhu.edu.cn
引用本文:    
娄冬冬, 张丽莎, 王海风, 陈志钢. 具有三维网状结构的石墨相氮化碳/还原氧化石墨烯/钯复合材料的合成及可见光催化性能*[J]. 《材料导报》期刊社, 2017, 31(20): 1-5.
LOU Dongdong, ZHANG Lisha, WANG Haifeng, CHEN Zhigang. Synthesis of Three-dimensional Network-structured g-C3N4/rGO/Pd Composites with Excellent Visible-light Photocatalytic Performances. Materials Reports, 2017, 31(20): 1-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.020.001  或          http://www.mater-rep.com/CN/Y2017/V31/I20/1
1 Xiang Q J, Yu J G, Jaroniec M. Graphene-based semiconductor photocatalysts [J]. Chem Soc Rev, 2012,41(2):782.
2 Wang P F, Zhan S H, Xia Y G, et al. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocompo-site for high-performance photocatalytic water splitting [J]. Appl Catal B: Environ, 2017,207:335.
3 Du J, Lai X Y, Yang N L, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: improved mass transfer, reduced charge recombination, and their enhanced photocatalytic activities [J]. ACS Nano, 2011,5:590.
4 Chen X Y, Zhou Y, Liu Q, et al. Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light [J]. ACS Appl Mater Interfaces, 2012,4(7):3372.
5 Tian C G, Zhang Q, Wu A P, et al. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation [J]. Chem Commun, 2012,48(23):2858.
6 Xu Y, Zhao W W, Xu R, et al. Synthesis of ultrathin CdS nano-sheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution [J]. Chem Commun, 2013,49(84):9803.
7 Wu T, Zhou X G, Zhang H, et al. Bi2S3 nanostructures: A new photocatalyst [J]. Nano Res, 2010,3(5):379.
8 Liu J H, Zhang T K, Wang Z C, et al. Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity [J]. J Mater Chem, 2011,21(38):14398.
9 Li S J, Zhang L S, Wang H L, et al. Ta3N5-Pt nonwoven cloth with hierarchical nanopores as efficient and easily recyclable macroscale photocatalysts [J]. Sci Rep, 2014,4:3978.
10Feng Xiping, Zhang Hong, Hang Zusheng. Peveloprment on photoeatalysis of g-C3N4 and modified g-C3N4[J]. J Funct Mater Devices, 2012,18(3):214(in Chinese).
冯西平, 张宏, 杭祖圣. g-C3N4及改性g-C3N4的光催化研究进展 [J]. 功能材料与器件学报, 2012,18(3):214.
11Wang X C, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light [J]. Nat Mater, 2009,8(1):76.
12Ong W J, Tan L L, Ng Y H, et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? [J]. Chem Soc Rev, 2016,116(12):7159.
13Cui Y J, Ding Z X, Fu X Z, et al. Construction of conjugated carbon nitride nanoarchitectures in solution at low temperatures for photoredox catalysis [J]. Angew Chem Int Ed, 2012,51(47):11814.
14Bai Y J, Lu B, Liu Z, et al. Solvothermal preparation of graphite-like C3N4nanocrystals [J]. J Cryst Growth, 2003,247(3-4):505.
15Zheng Y, Lin L H, Wang B, et al. Graphitic carbon nitride polymers toward sustainable photoredox catalysis [J]. Angew Chem Int Ed, 2015,54(44):12868.
16Surwade S P, Smirnov S N, Vlassiouk I V, et al. Water desalination using nanoporous single-layer graphene [J]. Nat Nanotechnol, 2015,10(5):459.
17Yu D S, Goh K, Wang H, et al. Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage [J]. Nat Nanotechnol, 2014,9(7):555.
18Zhang Y H, Tang Z R, Fu X Z, et al. TiO2-graphene nanocompo-sites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2-graphene truly different from other TiO2-carbon composite materials? [J]. ACS Nano, 2010,4:7303.
19Gao E P, Wang W Z, Shang M, et al. Synthesis and enhanced photocatalytic performance of graphene-Bi2WO6 composite [J]. Phys Chem Chem Phys, 2011,13(7):2887.
20Zhang N, Yang M Q, Tang Z R, et al. CdS-graphene nanocompo-sites as visible light photocatalyst for redox reactions in water: A green route for selective transformation and environmental remediation [J]. J Catal, 2013,303(7):60.
21Xiang Q J, Yu J G, Jaroniec M. Preparation and ehanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites [J]. J Phys Chem C, 2011,115(15):7355.
22Shiraishi Y, Kofuji Y, Kanazawa S, et al. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light [J]. Chem Commun, 2014,50(96):15255.
23Marschall R. Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity [J]. Adv Funct Mater, 2014,24:2421.
24Xu Y X, Sheng K X, Li C, et al. Self-assembled graphene hydrogel via a one-step hydrothermal process [J]. ACS Nano, 2010,4:4324.
25Tong Z W, Yang D, Shi J F, et al. Three-dimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance [J]. ACS Appl Mater Interfaces, 2015,7(46):25693.
26Tang Z H, Shen S L, Zhuang J, et al. Noble-metal-promoted three-dimensional macroassembly of single-layered graphene oxide [J]. Angew Chem Int Ed, 2010,49(27):4707.
27Nethravathi C, Rajamathi M. Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide [J]. Carbon, 2008,46(14):1994.
28Chen Y, Tian G, Shi Y, et al. Hierarchical MoS2/Bi2MoO6 composites with synergistic effect for enhanced visible photocatalytic activity [J]. Appl Catal B: Environ, 2015,164:40.
29Li X H, Antonietti M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional Mott-Schottky heterojunctions for catalysis [J]. Chem Soc Rev, 2013,42(16):6593.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[3] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[4] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[5] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[8] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[9] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[10] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[11] 王永强, 陈曦, 刘昕, 刘芳, 赵朝成, 姜珊, 吴鹏伟. MWCNT/Bi2WO6复合光催化剂的制备及其活性研究[J]. 材料导报, 2019, 33(2): 211-214.
[12] 涂盛辉, 徐翀, 戴策, 林立, 彭海龙, 杜军. 双金属纳米Ag/Cu负载TiO2的制备及光催化制氢活性[J]. 材料导报, 2019, 33(16): 2633-2637.
[13] 刘钊, 王纪孝, 孙亚伟. 硫酸掺杂聚苯胺涂层的快速表面光热杀菌性能[J]. 材料导报, 2019, 33(14): 2431-2435.
[14] 黄宁岸, 赵梓俨, 邹彦昭, 周莹. 表面处理对Pt/Al2O3光催化氧化NO的影响[J]. 材料导报, 2019, 33(12): 1921-1925.
[15] 安伟佳, 田玲玉, 芮玉兰, 高雅萌, 崔文权. Ag@AgCl/Bi2WO6复合光催化剂的制备及可见光催化性能[J]. 材料导报, 2019, 33(12): 1932-1938.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed