Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 2940-2948    https://doi.org/10.11896/j.issn.1005-023X.2018.17.007
  无机非金属及其复合材料 |
石墨烯湿敏性能研究进展
杨芳, 张龙, 余堃, 齐天骄, 官德斌
中国工程物理研究院化工材料研究所,绵阳 621900
Recent Advances in Humidity Sensitivity of Graphene
YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin
Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900
下载:  全 文 ( PDF ) ( 2115KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 湿度传感器与大气监测、工业生产和生物医疗等领域息息相关。 随着科技的不断发展,人们对高性能湿度传感器的需求不断增加,这为湿度传感器行业的发展带来了前所未有的机遇和挑战,其中高性能湿敏材料的开发尤为关键。在诸多湿度传感器中,金属氧化物或金属氧化物/聚合物复合材料湿度传感器因其敏感元件选择的多样性、易于后加工处理和响应特性高等特点而受到广泛关注。与聚合物湿度传感器相比,陶瓷材料的合成过程更简便,响应也通常更为迅速,且聚合物的成本更低。
   近些年,新型纳米材料被广泛应用于湿度传感器领域,逐渐成为湿敏材料的主要发展方向及研究热点。零维和一维纳米碳质材料,如富勒烯、碳纳米管作为湿敏活性层制备的传感器通常具有大比表面积、可室温下工作、易于实现微型化、稳定性好等诸多优点,但它们的零维或一维结构与现有的平面电子器件加工工艺不相匹配。
   石墨烯是由sp2杂化的碳原子紧密排列构成的二维蜂巢晶格结构的单层石墨,其独特的二维结构适用于现有的平面电子器件加工工艺。石墨烯材料作为湿敏活性层受到研究者们的广泛关注是因为它具备诸多优异特性:(1)石墨烯的所有原子都在表面,具有超大的比表面积,原则上,石墨烯传感器的动态检测范围可以从单个分子到很高的浓度水平;(2)利用石墨烯的电学特性和力学特性可以很好地进行传感信号的转换;(3)金属、聚合物或其他修饰剂功能化的石墨烯能与特定分子发生相互作用,大大增强传感器的选择性;(4)石墨烯单晶可以制作四探针装置,从而能够避免接触电阻的影响,并大大提高灵敏度;(5)与其他纳米碳材料如碳纳米管相比,石墨烯和氧化石墨烯制备成本更低。
   本文综述了石墨烯湿敏性能及其应用的研究进展,着重讨论了本征石墨烯、氧化石墨烯和改性石墨烯的湿敏特性。文章最后分析了石墨烯基湿度传感器未来的发展方向和面临的挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨芳
张龙
余堃
齐天骄
官德斌
关键词:  湿度传感器  智能材料  湿敏特性  石墨烯  氧化石墨烯  还原氧化石墨烯  改性石墨烯    
Abstract: Humidity detection plays a very important role in the fields of atmospheric monitoring, industrial production and biomedical materials and devices. With the continuous development of science and technology, the increasing demands for high performances humidity sensor bring out unprecedented opportunity and challenge for humidity sensor manufacturing, in which the deve-lopment of high performance humidity-sensitive materials is of crucial significance. Humidity sensors based on various materials have been developed, including ceramic, semiconducting, and polymer materials. Among the rich variety of humidity sensors, metal oxide and metal oxide/polymer based sensors have received recent attention due to their diversified sensitive element choices, ease of posterior processing and higher response characteristics. Compared with polymer-based humidity sensors, the sensitive ceramics have facile synthesis process and short response time, while nevertheless higher production cost.
   In recent years, novel nanostructured materials have achieved wide application for humidity sensor, and gradually become the development trends and the hot spots of the humidity-sensitive materials. While serving as sensitive layer, the zero dimensional and one dimensional nanosized graphitic materials, e.g. fullerene, carbon nanotubes (CNTs) can impart lots of advantages such as large surface area, ease of miniaturization, room temperature workability, favorable stability to humidity sensors. But their zero dimensional or one dimensional structure is technologically unadaptable to the prevailing standard fabrication process for electronic devices.
   Graphene, a monolayer of sp2 hybridized carbon atoms arranged in a honeycomb lattice with unique two dimensional (2D) structure, surmounts the technological obstacle for fullerene or CNTs, and the use of graphene as humidity-sensitive layer has drawn remarkable attention owing to its promising advantageous properties: Ⅰ. The theoretical dynamic detection range for graphene sensors may cover from a single molecule to a very high concentration level due to its extremely high surface to volume ratio with almost all the atoms exposed to the environment. Ⅱ. The electronic and mechanical properties of graphene greatly facilitate transduction of the sensing signal. Ⅲ. The sensing selectivity can be dramatically improved by adopting functionalized graphene which is incorporated with metals, polymers or other modifiers and can interact with specific molecules. Ⅳ. Graphene monocrystals can be used to fabricate four-probe devices, which can avoid the influence of contact resistance and improve sensitivity. Ⅴ. Graphene and graphene oxide are cheaper than other graphitic materials like CNTs.
   In this timely review, we render a vivid description of the recent advancement in humidity sensitivity features and sensor application of graphene and its derivatives, with emphases on the performance evolvement of intrinsic graphene, graphene oxides and modified graphene. Finally we make a concise discussion on the future challenges and perspectives of graphene-based humidity sensors.
Key words:  humidity sensor    smart material    humidity sensitivity    graphene    graphene oxide    reduced graphene oxide    mo-dified graphene
                    发布日期:  2018-09-19
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51402269)
作者简介:  杨芳:女,1989年生,硕士,助理研究员,主要从事纳米敏感材料与器件的研究 E-mail:yangfang@caep.cn
引用本文:    
杨芳, 张龙, 余堃, 齐天骄, 官德斌. 石墨烯湿敏性能研究进展[J]. 材料导报, 2018, 32(17): 2940-2948.
YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene. Materials Reports, 2018, 32(17): 2940-2948.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.007  或          http://www.mater-rep.com/CN/Y2018/V32/I17/2940
1 Kafy A, Akther A, Shishir M I R, et al. Cellulose nanocrystal/graphene oxide composite film as humidity sensor[J].Sensors and Actua-tors A: Physical,2016,247(1):221.
2 Zhang D Z, Chang H Y, Li P, et al. Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite[J].Sensors and Actuators B: Chemical,2016,225(1):233.
3 Guo R, Tang W, Shen C T, et al. High sensitivity and fast response graphene oxide capacitive humidity sensor with computer-aided design[J].Computational Materials Science,2016,111(1):289.
4 Yu H W, Kim H K, Kim T W, et al. Self-powered humidity sensor based on graphene oxide composite film intercalated by poly(sodium 4-styrenesulfonate)[J].ACS Applied Materials & Interfaces,2014,6(11):8320.
5 Lee S W, Choi B II, Kim J C, et al. Sorption/desorption hysteresis of thin-film humidity sensors based on graphene oxide and its derivative[J].Sensors and Actuators B: Chemical,2016,237(1):575.
6 Bi H C, Yin K B, Xie X, et al. Ultrahigh humidity sensitivity of graphene oxide[J].Scientific Reports,2013,1(1):1
7 Zhang D Z, Tong J, Xia B K, et al. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film[J].Sensors and Actuators B: Chemical,2014,203:263.
8 Ghosh A, Late D J, Panchakarla L S, et al. NO2 and humidity sen-sing characteristics of few-layer graphenes[J].Journal of Experimental Nanoscience,2009,4(4):313.
9 Alizadeh T, Shokri M. A new humidity sensor based upon graphene quantum dots preparedvia carbonization of citric acid[J].Sensors and Actuators B: Chemical,2016,222(1):728
10 Lin W D, Chang H M, Wu R J. Applied novel sensing material graphene/polypyrrole for humidity sensor[J].Sensors and Actuators B: Chemical,2013,181:326.
11 Li Y, Fan K C, Ban H T, et al. Detection of very low humidity using polyelectrolyte/graphene bilayer humidity sensors[J].Sensors and Actuators B: Chemical,2016,222(1):151.
12 Phan D T, Chung G S. Effects of rapid thermal annealing on humidity sensor based on graphene oxide thin films[J].Sensors and Actuators B: Chemical,2015,220(1):1050.
13 Su P G, Chiou C F. Electrical and humidity-sensing properties of reduced graphene oxide thin film fabricated by layer-by-layer with covalent anchoring on flexible substrate[J].Sensors and Actuators B: Chemical,2014,200:9.
14 Li Y, Deng C, Yang M J. Facilely prepared composites of polyelectrolytes and graphene as the sensing materials for the detection of very low humidity[J].Sensors and Actuators B: Chemical,2014,194:51.
15 Su P G, Lu Z M. Flexibility and electrical and humidity-sensing properties of diamine-functionalized graphene oxide films[J].Sensors and Actuators B: Chemical,2015,211(1):157.
16 Su P G, Shiu M L, Tsai M S. Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol-gel film[J].Sensors and Actuators B: Chemical,2015,216(1):467.
17 Feng X Y, Chen W F, Yan L F. Free-standing dried foam films of graphene oxide for humidity sensing[J].Sensors and Actuators B: Chemical,2015,215(1):316.
18 Yao Y, Chen X D, Guo H H, et al. Humidity sensing behaviors of graphene oxide-silicon bi-layer flexible structure[J].Sensors and Actuators B: Chemical,2012,161(1):1053.
19 Lin W D, Liao C T, Chang T C, et al. Humidity sensing properties of novel graphene/TiO2 composites by sol-gel process[J].Sensors and Actuators B: Chemical,2015,209(1):555.
20 Zhang D Z, Tong J, Xia B K. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly[J].Sensors and Actuators B: Chemical,2014,197:66.
21 Zhang D Z, Chang H Y, Liu R H. Humidity-sensing properties of one-step hydrothermally synthesized tin dioxide-decorated graphene nanocomposite on polyimide substrate[J].Journal of Electronic Materials,2016,45(8):4275.
22 Wang Z Y, Xiao Y, Cui X B, et al. Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide[J].ACS Applied Materials & Interfaces,2014,6(6):3888.
23 Chen J G, Peng T J, Sun H J, et al. Influence of thermal reduction temperature on the humidity sensitivity of graphene oxide[J].Fullerenes, Nanotubes, and Carbon Nanostructures,2014,23(5):418.
24 Lim M Y, Shin H, Shin D M, et al. Poly(vinyl alcohol) nanocomposites containing reduced grapheme oxide coated with tannic acid for humidity sensor[J].Polymer,2016,84(1):89.
25 Yun S W, Gong M S. Preparation of Flexible Resistive Micro-humi-dity sensors using quaternary ammonium salt-modified graphene oxide and their humidity-sensing properties[J].Macromolecular Research,2014,22(10):1043.
26 Huang Q W, Zeng D W, Tian S Q, et al. Synthesis of defect graphene and its application for room temperature humidity sensing[J].Materials Letters,2012,83:76.
27 Guo L, Jiang H B, Shao R Q, et al. Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device[J].Carbon,2012,50(4):1667.
28 Borini S, White R, Wei D, et al. Ultrafast graphene oxide humidity sensors[J].ACS Nano,2013,7(12):11166.
29 Chen M C, Hsu C L, Hsueh T J. Fabrication of humidity sensor based on bilayer graphene[J].IEEE Electron Device Letters,2014,35(5):590.
30 Gao R, Lu D F, Cheng J,et al. Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide[J].Sensors and Actuators B: Chemical,2016,222(1):618.
31 Wang Y Q, Shen C Y, Lou W M, et al. Polarization-dependent humidity sensor based on an in-fiber Mach-Zehnder interferometer coated with graphene oxide[J].Sensors and Actuators B: Chemical,2016,234(1):503.
32 Wang Y Q, Shen C Y, Lou W M, et al. Fiber optic humidity sensor based on the graphene oxide/PVA composite film[J].Optics Communications,2012,372(1):229.
33 Chi H, Liu Y J, Wang F K, et al. Highly sensitive and fast response colorimetric humidity sensors based on graphene oxides film[J].ACS Applied Materials & Interfaces,2015,7(36):19882.
34 Balashov S M, Balachova O V, Braga A V U, et al. Influence of the deposition parameters of graphene oxide nanofilms on the kinetic characteristics of the SAW humidity sensor[J].Sensors and Actuators B: Chemical,2015,217(1):88.
35 Yao Y, Xue Y J. Influence of the oxygen content on the humidity sensing properties of functionalized graphene films based on bulk acoustic wave humidity sensors[J].Sensors and Actuators B: Chemical,2016,222(1):755.
36 Su P G, Lin Y T. Low-humidity sensing properties of diamine- and β-cyclodextrin-functionalized graphene oxide films measured using a quartz-crystal microbalance[J].Sensors and Actuators A: Physical,2016,238(1):344.
37 Yuan Z, Tai H L, Bao X H, et al. Enhanced humidity-sensing pro-perties of novel grapheme oxide/zinc oxide nanoparticles layered thin film QCM sensor[J].Materials Letters,2016,174(1):28.
38 Tai H L, Zhen Y, Liu C H, et al. Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film[J].Sensors and Actuators B: Chemical,2016,230(1):501.
39 Yao Y, Chen X D, Guo H H, et al. Graphene oxide thin film coated quartz crystal microbalance for humidity detection[J].Applied Surface Science,2011,257(17):7778.
40 Yao Y, Chen X D, Li X Y, Investigation of the stability of QCM humidity sensor using graphene oxide as sensing films[J].Sensors and Actuators B: Chemical,2014,191:779.
41 Yao Y, Xue Y J. Impedance analysis of quartz crystal microbalance humidity sensorsbased on nanodiamond/graphene oxide nanocomposite film[J].Sensors and Actuators B: Chemical,2015,211(1):52.
42 Yuan Z, Tai H L, Ye Z B, et al. Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film[J].Sensors and Actuators B: Chemical,2016,234(1):145.
43 Geim A K, Novoselov K S. The rise of graphene[J].Nature Mate-rials,2007,6(3):183.
44 Novoselov K S, Fal’ko V I, Colombo L, et al. A roadmap for graphene[J].Nature,2012,490(7419):192.
45 Yuan W J, Shi G Q. Graphene-based gas sensors[J].Journal of Materials Chemistry A,2013,1(35):10078.
46 He Q Y, Wu S X, Yin Z Y, et al. Graphene-based electronic sensors[J].Chemical Science,2012,3(6):1764.
47 Liu Y X, Dong X C, Chen P. Biological and chemical sensors based on graphene materials[J].Chemical Society Reviews,2012,41(6):2283.
48 Basu S, Bhattacharyya P. Recent developments on graphene and graphene oxide based solid state gas sensors[J].Sensors and Actuators B: Chemical,2012,173:1.
49 Yavari F, Koratkar N. Graphene-based chemical sensors[J].Journal of Physical Chemistry Letters,2012,3(13): 1746.
50 Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J].Science,2004,306(5596):666.
51 Li X L, Zhang G Y, Bai X D, et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J].Nature Nanotechnology,2008,3(9):538.
52 Subrahmanyam K S, Panchakarla L S, Govindaraj A, et al. Simple method of preparing graphene flakes by an arc-discharge method[J].Journal of Physical Chemistry C,2009,113(11):4257.
53 Berger C, Song Z M, Li X B, et al. Electronic confinement and coherence in patterned epitaxial graphene[J].Science,2006,312(5777):1191.
54 Singh V, Joung D, Zhai L, et al. Graphene based materials: Past, present and future[J].Progress in Materials Science,2011,56(8):1178.
55 Kim K S, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J].Nature,2009,457(7230):706.
56 Reina A, Jia X T, Ho J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J].Nano Letters,2009,9(1):30.
57 Fan X B, Peng W C, Li Y, et al. Deoxygenation of exfoliated grap-hite oxide under alkaline conditions: A green route to graphene preparation[J].Advanced Materials,2008,20(23):4490.
58 Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J].Carbon,2007,45(7):1558.
59 Du X, Skachko I, Barker A, et al. Approaching ballistic transport insuspended graphene[J].Nature Nanotechnology,2008,3:491.
60 Balandin A A. Thermal properties of graphene and nanostructured carbon materials[J].Nature Materials,2011,10(8):569.
61 Liu F, Ming P M, Li J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J].Physical Review B,2007,76(6):064120.
62 Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic pro-perties and intrinsic strength of monolayer graphene[J].Science,2008,321(5887):385.
63 Wu J B, Becerril H A, Bao Z N, et al. Organic solarcells with solution-processed graphene transparent electrodes[J].Applied Physics Letters,2008,92(26):263302.
64 Stoller M D, Park S J, Zhu Y W, et al. Graphene-based ultracapacitors[J].Nano Letters,2008,8(10):3498.
65 Luo B, Liu S M, Zhi L J. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas[J].Small,2012,8(5):630.
66 Wang Y, Li Z H, Wang J, et al. Graphene and graphene oxide: Bio-functionalization and applications in biotechnology[J].Trends in Biotechnology,2011,29(5):205.
67 Avouris P. Graphene: Electronic and photonic properties and devices[J].Nano Letters,2010,10(11):4285.
68 Zhu Y W, Murali S, Cai W W, et al. Graphene and graphene oxide: Synthesis, properties, and applications[J].Advanced Materials,2010,22(35):3906.
69 Bolotin K I, Ghahari F, Shulman M D, et al. Observation of the fractional quantum Hall effect in graphene[J].Nature,2009,462(7270):196.
70 Schedin F, Geim A K, Morozov S V, et al. Detection of individual gas molecules adsorbed on graphene[J].Nature Materials,2007,6(9):652.
71 Nair R R, Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[J].Science,2008,320(5881):1308.
72 Egashira M, Kawasumi S, Seiyama T, et al. Temperature program med desorption study of water adsorbed on metal oxides. I. Anatase and rutile[J].Bulletin of the Chemical Society of Japan,1978,51(11):3144.
[1] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[4] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[5] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[6] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[7] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[8] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[9] 冯妙, 刘燕, 邓会宁, 王子霞. 层层自组装法制备氧化石墨烯复合单价选择性离子交换膜[J]. 材料导报, 2019, 33(6): 1057-1060.
[10] 贾琨, 王东红, 李克训, 谷建宇, 刘伟. 石墨烯复合吸波材料的研究进展及未来发展方向[J]. 材料导报, 2019, 33(5): 805-811.
[11] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[12] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[13] 马李璇, 李凯, 宁平, 梅毅, 王驰, 孙鑫. 石墨烯在水环境中的转化和降解行为研究进展[J]. 材料导报, 2019, 33(3): 395-401.
[14] 王胜涛, 卢维尔, 王桐, 夏洋. PMMA/PVA双支撑膜辅助铜刻蚀法:一种改进的石墨烯转移技术[J]. 材料导报, 2019, 33(2): 230-233.
[15] 马应霞, 金朋生, 邵文杰, 寇亚兰, 喇培清. 表面接枝端羟基聚酰胺-胺的磁性氧化石墨烯对Hg(Ⅱ)的吸附性能[J]. 材料导报, 2019, 33(2): 234-239.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed