Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 595-604    https://doi.org/10.11896/cldb.201904006
  无机非金属及其复合材料 |
4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究
董海宽,史力斌
渤海大学数理学院,锦州 121013
Investigation of Hydrogen Cyanide Adsorption Behavior on 4d Transition Metals Doped Graphene: First Principles Calculations
DONG Haikuan, SHI Libin
School of Mathematics and Physics, Bohai University, Jinzhou 121013
下载:  全 文 ( PDF ) ( 4961KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用第一性原理的密度泛函理论方法研究了掺杂Y、Zr、Nb、Mo、Tc和Ru的石墨烯体系对氰化氢(HCN)的吸附作用。首先考察了HCN分子中H、C或N原子分别靠近吸附点的三种吸附构型。然后比较了吸附HCN前后掺杂石墨烯的能带变化。研究结果表明,掺杂Mo和Ru的石墨烯吸附HCN后的带隙大小变化大于20%,并表现为半导体行为,说明吸附后掺杂石墨烯的电导性能受影响较大。此外,进一步研究了掺杂Mo和Ru的石墨烯吸附HCN的过程,讨论了吸附能、带隙、晶格常数、HCN电荷和键长的变化,并分析了掺杂Mo和Ru的石墨烯的振动特性。研究表明,掺杂Mo和Ru的石墨烯对HCN的吸附非常敏感,这可能是开发HCN传感器的有用材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董海宽
史力斌
关键词:  石墨烯  过渡金属掺杂  氰化氢  吸附  第一原理    
Abstract: Hydrogen cyanide (HCN) adsorption on graphene doped with Y, Zr, Nb, Mo, Tc, and Ru was investigated from first principles using density functional theory. Firstly, three kinds of HCN adsorption configurations were investigated, in which either the H, C or N atoms in HCN molecule were oriented towards the adsorption site, respectively. Secondly, compared the energy band structure of doped graphene before and after HCN adsorption. The results indicated that the band gaps of Mo-and Ru-doped graphene were all greater than 20% after HCN adsorption, and exhibited semiconductor behavior, indicating that the conductivity could be affected significantly. In addition, HCN adsorption processes in Mo-and Ru-doped graphene were further studied, the changes in the adsorption energies, band gaps, lattice constants, HCN charges, and bond lengths were discussed in more detail, and vibrational properties of Mo-and Ru-doped graphene were analyzed. This study suggested that Mo-and Ru-doped graphene were very sensitive to the adsorption of HCN, which could be useful materials for the development of HCN sensors.
Key words:  graphene    transition metals doping    hydrogen cyanide    adsorption    first principles
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  O793  
基金资助: 国家自然科学基金(11674037);辽宁省自然科学基金(20180550102);辽宁省教育厅基本科研项目(LQ2017005)
作者简介:  董海宽,渤海大学,实验师。2018年3月毕业于辽宁工业大学,获得材料工程硕士学位。主要从事新型二维材料及其性能的研究。
引用本文:    
董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
DONG Haikuan, SHI Libin. Investigation of Hydrogen Cyanide Adsorption Behavior on 4d Transition Metals Doped Graphene: First Principles Calculations. Materials Reports, 2019, 33(4): 595-604.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904006  或          http://www.mater-rep.com/CN/Y2019/V33/I4/595
1 Novoselov K S, Geim A K, Morozov S V, et al. S<i>cience</i>,2004,306(5696),666.<br />
2 Zhou J, Wang Q, Sun Q, et al. <i>Nano Letters</i>,2009,9(11),3867.<br />
3 Zhou Q, Fu Z, Tang Y, et al. <i>Physica E: Low-dimensional Systems and Nanostructures</i>,2014,60,133.<br />
4 Wang L, Luo Q, Zhang W, et al. <i>International Journal of Hydrogen Energy</i>,2014,39(35),20190.<br />
5 Lee Y, Lee S, Hwang Y, et al. <i>Applied Surface Science</i>,2014,289,445.<br />
6 Tang Y, Yang Z, Dai X. <i>Journal of Magnetism and Magnetic Materials</i>,2011,323(20),2441.<br />
7 Szcz s′niak B, Choma J, Jaroniec M. <i>Microporous and Mesoporous Mate-rials</i>,2018,261,105.<br />
8 Dai Z, Zhao Y. <i>Applied Surface Science</i>,2014,305,382.<br />
9 Gadipelli S, Guo Z X. <i>Progress in Materials Science</i>,2015,69,1.<br />
10 Zhou Q, Wang C, Fu Z, et al. <i>Computational Materials Science</i>,2014,83,398.<br />
11 Araujo P T, Terrones M, Dresselhaus M S. <i>Materials Today</i>,2012,15(3),98.<br />
12 Sun M, Peng Y. <i>Applied Surface Science</i>,2014,307,158.<br />
13 Zhang T, Sun H, Wang F, et al. <i>Applied Surface Science</i>,2017,425,340.<br />
14 Chen X, Xu L, Liu L L, et al. <i>Applied Surface Science</i>,2017,396,1020.<br />
15 Rad A S, Kashani O R. <i>Applied Surface Science</i>,2015,355,233.<br />
16 Rad A S, Shabestari S S, Mohseni S, et al.<i> Journal of Solid State Che-mistry</i>,2016,237,204.<br />
17 Rad A S. <i>Synthetic Metals</i>,2016,211,115.<br />
18 Zhou Q, Ju W, Su X, et al. <i>RSC Advances</i>,2017,7(69),43521.<br />
19 Dong H K, Wang Y P, Shi L B. <i>Surface Review and Letters</i>,2016,23(1),1550095.<br />
20 Shi L B, Wang Y P, Dong H K. <i>Applied Surface Science</i>,2015,329,330.<br />
21 Shi L B, Li M B, Fei Y.<i> Solid State Sciences</i>,2013,16,21.<br />
22 Dubay O, Kresse G. <i>Physical Review B</i>,2003,67(3),035401.<br />
23 Liu X Y, Zhang J M. <i>Applied Surface Science</i>,2014,293,216.<br />
24 Rastegar S F, Peyghan A A, Hadipour N L. <i>Applied Surface Science</i>,2013,265,412.<br />
25 Li S S, <i>Semiconductor Physical Electronics</i>, Springer, Germany,2006, pp. 211.<br />
26 Takahashi T, Sugawara K, Noguchi E, et al.<i> Carbon</i>,2014,73,141.<br />
27 Wirtz L, Rubio A. <i>Solid State Communications</i>,2004,131(3-4),141.<br />
28 Islam M S, Ushida K, Tanaka S, et al.<i> Computational Materials Science</i>,2014,94,35.<br />
29 Nemanich R, Lucovsky G, Solin S. <i>Materials Science and Engineering</i>,1977,31,157.<br />
30 Zhou X, Huang Y, Chen X, et al. <i>Solid State Communications</i>,2013,157,24.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[4] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[7] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[8] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[9] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[10] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[11] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[12] 莫松平, 郑麟, 袁潇, 林潇晖, 潘婷, 贾莉斯, 陈颖, 成正东. 具有高分散稳定性的磷酸锆悬浮液的液固相变循环性能[J]. 材料导报, 2019, 33(6): 919-922.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 周宇飞, 袁一鸣, 仇中柱, 乐平, 李芃, 姜未汀, 郑莆燕, 张涛, 李春莹. 纳米铝和石墨烯量子点改性的相变微胶囊的制备及特性[J]. 材料导报, 2019, 33(6): 932-935.
[15] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed