Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1483-1489    https://doi.org/10.11896/cldb.18040274
  无机非金属及其复合材料 |
硅藻土基复合材料在能源与环境领域的应用进展
姜德彬1, 袁云松2, 吴俊书3, 杜玉成3, 王金淑3, 张育新1
1 重庆大学材料科学与工程学院,机械传动国家重点实验室,重庆 400044
2 重庆大学城市建设与环境工程学院,重庆 400030
3 北京工业大学新型功能材料教育部重点实验室,北京100124
Advances in Application of Diatomite-based Composites in the Field of Energy and Environment
JIANG Debin1, YUAN Yunsong2, WU Junshu3, DU Yucheng3, WANG Jinshu3, ZHANG Yuxin1
1 State Key Laboratory of Mechanical Transmissions, College of Materials Science and Engineering, Chongqing University, Chongqing 400044
2 School of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400030
3 Key Laboratory of Advanced Functional Materials, School of Materials Science and Engineering, Beijing University of Technology, Beijing 100124
下载:  全 文 ( PDF ) ( 4627KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相比于传统的纳米颗粒材料,无机有序多孔纳米材料具有大的比表面积、高的吸附容量和许多特殊性能,在吸附、分离、催化等领域得到广泛应用。硅藻土作为一种天然的矿物材料具有多级孔道结构,是一种优良的无机多孔材料。过去对硅藻土的开发与利用的方式较为粗犷,例如用于建筑材料、过滤填料等低附加值材料。近年来,由于硅藻土具有独特的纳米和微米形态天然多孔三维分层结构、高比表面积,以及良好的热稳定性和高性价比,其研究与利用逐渐成为微纳米技术领域的热点,在微纳米尺度引出一系列理论和技术问题,其研究成果也逐步应用到工业与民生领域。
得益于自身天然多孔的三维分层结构,硅藻土具有较高的比表面积,因而有潜力成为储能器件的原材料。然而,硅藻土存在高电阻率等缺点,不利于能量转换和储存等应用。为此,研究者对硅藻土的优化开展了大量的工作。具体地说,一方面将具有电化学性质的材料负载于硅藻土表面,利用硅藻土表面的硅羟基与修饰材料进行价键匹配,使复合材料具有较高的导电特性;同时,借助硅藻土高的比表面积及多孔结构,可大幅提高硅藻土基复合材料的电化学性能。另一方面,将硅藻土完全转化为另一种高导电性材料,以进一步提高复合材料的导电性能。硅藻土基复合材料在储能方面的应用已经引起广泛关注,并显示出巨大的潜力和发展空间。
三维多孔材料在环境领域也具有广阔的应用空间。表面修饰可赋予硅藻土三维多孔材料优异的性能。例如,采用硅藻土表面硅羟基与纳米金属氧化物通过氢键进行结合,可显著改变纳米金属氧化物的表面价键排布,从而影响材料的性能。现阶段国内外针对硅藻土基复合材料在环境领域的应用已经开展了大量的研究工作。主要通过表面化学修饰的手段在硅藻土表面可控沉积功能材料实现功能性复合材料的构筑。这种复合材料保持着硅藻土的孔道结构,其较高的比表面积为功能材料提供了大量的活性位点,可显著提升硅藻土复合材料的性能。
硅藻土基复合纳米材料是近年来出现的一个新的研究领域,它在超级电容器储能、锂电池、重金属污染物吸附、降解、催化合成等诸多领域得到了研究及应用。根据近年来国内外在硅藻土材料方面的研究现状,本文介绍了使用硅藻基复合材料在能源及环境领域应用的新进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姜德彬
袁云松
吴俊书
杜玉成
王金淑
张育新
关键词:  硅藻土  超级电容  重金属  吸附  催化    
Abstract: Compared with traditional nanoparticle materials, inorganic nanocomposites with ordered and porous structure are superior in specific surface area and adsorption capacity, showing tremendous application potential in the field of adsorption, separation, catalysis and so forth. Among them, the diatomite are one of the most spectacular examples of natural inorganic ordered porous materials with a unique pattern of nano-sized features. In the past, diatomite were developed and utilized in an extensive pattern, and the major application for diatomite is restricted to building materials, filter fillers, etc. In recent years, the research and utilization of diatomite has gradually become a hot spot in the field of micro and nano-technology, thanks to their unique shapes and ordered porous structures at the micro-and nanoscale, high specific surface area, favorable thermal stability and cost-effectiveness advantages. A series of theoretical and technical problems concerning diatomite are raised in micro-and nano-scale, and the related research results have already applied to industry and people’s livelihood.
It is not surprising that these promising natural materials with unique structures has been considered as candidate raw materials for energy conversion and storage devices. Nevertheless, diatomite have many limitations such as high resistivity, which are not favourable for energy conversion and storage and other applications. Accordingly, considerable efforts have been paid for optimization of diatomite. Specifically speaking, one approach is to load a particular material with satisfactory electrochemical properties on the surface of diatomite, and the silica hydroxyl group on the surface of diatomite can be used to match the valence bond with the modification material. Meanwhile, porous structure of diatomite with high specific surface area will contribute to greatly improve the electrochemical properties of diatomite based composites. Another approach is to transform diatomite into another kind of material with high conductivity. The application of diatomite-based composite materials in energy storage has attracted extensive attention and exhibited great potential.
Three-dimensional porous materials have a wide range of applications in the environmental field. Surface modification can endow diatomite with excellent performance of the three-dimensional porous material. For instance, the arrangement of valence bonds on the surface of nano-metal oxides can be significantly varied by the combination of silicon hydroxyl groups on the surface of diatomite and the nano-metal oxides through hydrogen bonding, thereby affecting the properties of the materials. Besides, a great deal of work has been carried out on the research of diatomite-based composite materials in the environmental field at home and abroad. The functional composites are achieved by controllable deposition of functional materials on diatomite surface. This composite material maintaining the pore structure of diatomite and high specific surface area provides a large number of active sites for functional materials, and significantly improves the performance of diatomite-based composite materials.
Diatomite-based composite materials are emerging research subjects, which have been studied and applied in many fields, including supercapacitors, lithium batteries, heavy metal pollutant adsorption, degradation and catalysis. According to the research status of diatomite-based composites both at home and abroad in recent years, the latest progress of application of novel diatomite-based composites in energy storage and pollutant adsorption, degradation and catalysis is demonstrated.
Key words:  diatomite    energy storage    heavy metal    adsorption    catalysis
                    发布日期:  2019-05-08
ZTFLH:  TB34  
基金资助: 中央高校基本科研业务费研究生创新创业项目(106112017CDJXSYY0001);国家自然科学基金面上项目(21576034)
通讯作者:  zhangyuxin@cqu.edu.cn   
作者简介:  姜德彬,2016年6月毕业于成都信息工程大学,获得工学硕士学位。现为重庆大学先进材料研究院博士研究生,在张育新教授的指导下进行研究。目前主要研究领域为硅藻土基复合材料制备与应用。张育新,重庆大学教授,2000年本科毕业于天津大学,2008年博士毕业于新加坡国立大学,师从曾华淳教授(全球Top100化学家)。主要从事多维度和多组分的可控自组装纳米技术、以超级电容器/清洁能源/环保等应用,尤其是在MnO2和硅藻土的纳米结构材料,获2016年度Journal of Materials Chemistry A优秀审稿人称号,获2016年重庆市科技创新领军人才。王金淑,工学博士,北京工业大学教授,材料科学与工程学院院长,国家杰出青年基金获得者、教育部长江学者特聘教授,获国务院政府特殊津贴,入选国家级百千万人才工程计划。Materials Focus、International Journal of Nonferrous Metallurgy、《粉末冶金技术》等编委。长期从事无机材料制备、性能分析及技术应用研究。
引用本文:    
姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
JIANG Debin, YUAN Yunsong, WU Junshu, DU Yucheng, WANG Jinshu, ZHANG Yuxin. Advances in Application of Diatomite-based Composites in the Field of Energy and Environment. Materials Reports, 2019, 33(9): 1483-1489.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18040274  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1483
1 Chen K, Li C, Shi L, et al. Nature Communication,2016,7,13440.
2 Pan Z, Lerch S J, Xu L, et al. Scientific Reports,2014,4,6117.
3 Zhang Z, Wang Z. The Journal of Organic Chemistry,2006,71(19),7485.
4 Kang S M, Ryou M H, Choi J W, et al. Chemistry of Materials,2012,24(17),3481.
5 Liu J, Kopold P, van Aken P A, et al. Angewandte Chemie-International Edition,2015,54(33),9632.
6 Lisowska-Oleksiak A, Nowak A P, Wicikowska B. RSC Advances,2014,4(76),40439.
7 Chen J, Lu X, Sun J, et al. Materials Letters,2015,152,256.
8 Liang J W, Li X N, Zhu Y C, et al. Nano Research,2015,8(5),1497.
9 Zhang Y X, Huang M, Li F, et al. Journal of Power Sources,2014,246,449.
10Li F, Xing Y, Huang M, et al. Journal of Materials Chemistry A,2015,3(15),7855.
11Wen Z Q, Li M, Li F, et al. Dalton Transations,2016,45(3),936.
12Guo X L, Kuang M, Li F, et al. Electrochimica Acta,2016,190,159.
13Zhang Y X, Li F, Huang M, et al. Materials Letters,2014,120,263.
14Jiang D B, Zhang B Y, Zheng T X, et al. Materials Letters,2018,215,23.
15Le Q J, Wang T, Tran D N H, et al. Journal of Materials Chemistry A,2017,5(22),10856.
16Etacheri V, Marom R, Elazari R, et al. Energy & Environmental Science,2011,4(9),3243.
17Bao Z, Weatherspoon M R, Shian S, et al. Nature,2007,446(7132),172.
18Shen L Y, Wang Z X, Chen L Q. RSC Advances,2014,4(29),15314.
19Campbell B, Ionescu R, Tolchin M, et al. Scientific Reports,2016,6,33050.
20Sheng G, Wang S, Hu J, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,339(1-3),159.
21Caliskan N, Kul A R, Alkan S, et al. Journal of Hazardous Materials,2011,193,27.
22Sprynskyy M, Kovalchuk I, Buszewski B. Journal of Hazardous Mate-rials,2010,181(1-3),700.
23Du Y, Wang L, Wang J, et al. Journal of Environmental Sciences,2015,29,71.
24Du Y, Zheng G, Wang J, et al. Microporous and Mesoporous Materials,2014,200,27.
25Du Y, Fan H, Wang L, et al. Journal of Materials Chemistry A,2013,1(26),7729.
26Zheng G W, Du Y C, Hou R Q, et al. Chinese Journal of Inorganic Chemistry,2015,31(5),930(in Chinese).
郑广伟,杜玉成,侯瑞琴,等.无机化学学报,2015,31(5),930.
27Yuan P, Liu D, Fan M, et al. Journal of Hazardous Materials,2010,173(1-3),614.
28Yuan P, Liu D, Tan D Y, et al. Microporous and Mesoporous Materials,2013,170,9.
29Bao Z, Song M K, Davis S C, et al. Energy & Environmental Science,2011,4(10),3980.
30Jantschke A, Herrmann A K, Lesnyak V, et al. Chemistry-An Asian Journal,2012,7(1),85.
31Yu W, Yuan P, Liu D, et al. Journal of Hazardous Materials,2015,285,173.
32Yuan W, Yuan P, Liu D, et al. Chemical Engineering Journal,2016,294,333.
33Yuan W, Yuan P, Liu D, et al. Microporous and Mesoporous Materials,2015,206,184.
34Liu D, Gu J, Liu Q, et al. Advanced Materials,2014,26(8),1229.
35Thakkar M, Wu Z, Wei L, et al. Journal of Colloid and Interface Science,2015,450,239.
36Liu D, Yuan P, Tan D, et al. Journal of Colloid and Interface Science,2012,388(1),176.
37Liu D, Yuan W, Deng L, et al. Journal of Colloid and Interface Science,2014,424,22.
38Padmanabhan S K, Pal S, Ul Haq E, et al. Applied Catalysis A: Gene-ral,2014,485,157.
39Sun Z, Bai C, Zheng S, et al. Applied Catalysis A: General,2013,458,103.
40Sun Q, Li H, Zheng S, et al. Applied Surface Science,2014,311,369.
41Zhang G, Sun Z, Duan Y, et al. Applied Surface Science,2017,412,105.
42Wang B, Zhang G, Leng X, et al. Journal of Hazardous Materials,2015,285,212.
43Chen Y, Liu K. Chemical Engineering Journal,2016,302,682.
44Chen Y, Liu K. Powder Technology,2016,303,176.
45Chen Y, Liu K. Powder Technology,2017,313,44.
46Chen Y, Liu K. Journal of Alloys and Compounds,2017,697,161.
47Wu Z, Zhu Z, Hao X, et al. Journal of Hazardous Materials,2018,347,48.
48Liu J, Antonietti M. Energy & Environmental Science,2013,6(5),1486.
49Feng F U, Jie Z, He X M, et al. Journal of Inorganic Materials,2016,31(8),881.
50Liu X, Yang C, Wang Y, et al. Chemical Engineering Journal,2014,243,192.
51Li B, Xu X, Zhu L, et al. Desalination,2010,254(1-3),90.
52Liang H, Zhou S, Chen Y, et al. Journal of the Taiwan Institute of Che-mical Engineers,2015,49,105.
53Zhang Y X, Hao X D, Li F, et al. Industrial & Engineering Chemistry Research,2014,53(17),6966.
54He Y, Jiang B, Jiang Y, et al. Journal of Hazardous Materials,2018,344,230.
55Jiang D B, Liu X, Xu X, et al. Journal of Physics and Chemistry of Solids,2018,112,209.
56Son B H D, Mai V Q, Du D X, et al. Journal of Porous Materials,2016,24(3),601.
57Fischer C, Adam M, Mueller A C, et al. ACS Omega,2016,1(6),1253.
58Guo S, Shi L. Catalysis Today,2013,212,137.
59Jabbour K, El Hassan N, Davidson A, et al. Chemical Engineering Journal,2015,264,351.
60Yun Y, Li Z, Chen Y H, et al. Journal of Water Reuse and Desalination,2018,8(1),29.
61Sun Z, Yao G, Liu M, et al. Journal of the Taiwan Institute of Chemical Engineers,2017,71,501.
62Zha Y, Zhou Z, He H, et al. Water Science and Technology,2016,73(11),2815.
63Sun Z, Zheng S, Ayoko G A, et al. Journal of Hazardous Materials,2013,263,768.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[3] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[4] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[5] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[6] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[7] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[8] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[9] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[10] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[11] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[12] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[13] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[14] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[15] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed