Please wait a minute...
材料导报  2019, Vol. 33 Issue (9): 1550-1557    https://doi.org/10.11896/cldb.18020025
  金属与金属基复合材料 |
纳米零价铁优化体系及其在环境中的应用研究进展
秦小凤1, 曹嘉真1, 汪小莉2, 张贤明1, 吕晓书1
1.重庆工商大学废油资源化技术与装备教育部工程研究中心,重庆 400067;
2.中国石油集团川庆钻探工程有限公司安全环保质量监督检测研究院,重庆 400042
Nanoscale Zero Valent Iron-based Optimization System and Their Application in Environmental Remediation: a Review
QIN Xiaofeng1, CAO Jiazhen1, WANG Xiaoli2, ZHANG Xianming1, LYU Xiaoshu1
1.Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067;
2.China Petroleum Group Chuanqing Drilling Engineering Co., Ltd. Safety and Environmental Quality Supervision and Inspection Research Institute, Chongqing 400042
下载:  全 文 ( PDF ) ( 2767KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 零价铁材料作为近年来受到广泛关注和研究的环境原位修复介质,主要得益于自身的一些优势:(1)原料价廉易得,铁在自然界中广泛存在,含量占地壳元素的4.75%,丰富的储存量有利于降低其使用成本;(2)铁化学性质活泼,还原电势高,能与多种污染物发生反应,将其转化到无毒或低毒状态;(3)铁是一种环境友好的修复介质,不易造成二次污染等问题。此外,铁材料还具有较强的磁性,有利于分离回收。然而普通的零价铁颗粒比表面积相对较小,在一定程度上会影响零价铁的使用效果,尤其是去除速率较慢,同时较大的尺寸也使得零价铁材料不适用于土壤修复等对材料渗透性有一定要求的应用环境。
为解决这一问题,纳米零价铁材料成为研究热点,其极大的比表面积可使材料反应速率提高到普通铁粉的10~100倍,反应活性极佳,且其颗粒粒径小、渗透性和流动性强,可通过注射的方式进入到地下污染体系中,能实现对土壤和地下水的污染修复,在各种污染环境的原位修复中有着广阔的应用前景。纳米零价铁的制备方法较多,主要可分为物理法(高能机械球磨法、物理气相冷凝法、溅射法和等离子体法等)和化学法(液相化学还原法、固相化学还原法、溶剂热法、气相化学反应法、电沉积法等)两大类。然而纳米零价铁材料性质过于活泼、表面能量高,且磁性较强又会导致其在使用中发生团聚、钝化等问题,严重降低电子效率,限制能效的充分发挥和使用寿命。为此,在纳米零价铁材料基础上进行优化改性是该领域的目前主要发展方向。
本文将目前最常见的纳米零价铁优化体系归纳为三类:(1)纳米零价铁稳定化体系,又包括物理负载稳定化和表面化学改性稳定化两种;(2)纳米零价铁包埋体系,其中以生物材料固定化包埋最为常见;(3)纳米零价铁复合体系,例如铁/碳复合纳米材料、纳米双金属复合材料等。本文总结了各体系的特点和相应的制备技术,重点阐述了纳米零价铁优化体系在重金属、有机氯等污染环境中的最新应用进展,揭示了其修复机理和影响能效的因素。进一步提高纳米零价铁优化体系的使用效率、延长使用寿命、降低成本以及拓宽其应用领域,将是该领域未来的主要研究目标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦小凤
曹嘉真
汪小莉
张贤明
吕晓书
关键词:  纳米零价铁  改性  重金属去除  脱氯降解    
Abstract: In recent years, zero-valent iron (ZVI) materials, as environmental in situ restoration agents, have received extensive attention and research. The superiority of ZVI materials can be concluded by the following aspects. Ⅰ. The raw material of ZVI iron, is cheap and easy to obtain, which is one of the most abundant elements in nature, accounting for 4.75% of the crustal elements, and the rich storage of iron is beneficial to reduce the cost of production. Ⅱ. Iron is active in chemistry and feature high reduction potential, which can react with diverse pollutants and convert them into non-toxic or low-toxic state. Ⅲ. Iron is a kind of environmental benign restoration agent, reducing the risk of secondary pollution. In addition, magnetic iron-based materials are in favor of recycling. Nevertheless, ordinary ZVI particles are not efficient in all cases because of their relatively small specific surface area, especially the large particle size of ZVI blocked its application in special environments (most part of underground water or unconsolidated aquifers) that requires the permeability of restoration agent.
For the sake of making better use of ZVI, nanoscale zero valent iron (nZVI or nFe0) is designed. Thanks to the large specific surface area, nZVI exhibits outstanding reactivity, 10—100 times of that of ordinary ZVI, the small particle size, strong permeability and fluidity enables nZVI to directly inject into the underground pollution system, thus the remediation of soil and groundwater pollution can be realized. Therefore, nZVI possesses a broad prospect of application in the in-situ remediation of diverse polluted environments. There are many preparation approaches of nZVI, which can be divided into physical method (high-energy mechanical ball milling, physical vapor condensation, sputtering and plasma methods) and chemical method (liquid-phase chemical reduction, solid-phase chemical reduction, solvothermal, gas chemical reaction, electrodeposition methods, etc.). However, the excessive activity, high surface energy, nano size and strong magnetism of the nZVI will bring about the problems of agglomeration and fast surface passivation, which dramatically reduce the electronic efficiency, limit their function and shorten the life-time. Therefore, various kinds of nZVI-based nanocomposites have been developed to avoid these deficiencies.
This paper reviews the recent modification technologies on nZVI, and classifies these nZVI-based nanocomposties into three categories: stabilized nZVI system (include physical load stabilization and surface chemical modification stabilization), immobilized nZVI system (the immobilization of biomaterials is most popular) and nZVI nanohybrids (such as iron/carbon nanocomposites, nano-bimetallic composites, etc.). The characteristics of each system and the corresponding preparation techniques are summarized, emphasis is put on their application in heavy metal and chlorine-containing organic polluted environment remediation, as well as remediation mechanism and influencing factors. It also suggests that the future research should be focused on further improvement of the efficiency, extending their lifespan, reducing economic cost, and enlarging the scope of application.
Key words:  nanoscale zero-valent iron    modification    heavy metal removal    dechlorination
               出版日期:  2019-05-10      发布日期:  2019-05-08
ZTFLH:  TB39  
基金资助: 国家自然科学基金面上项目(21676037);重庆市基础与前沿研究计划项目(cstc2015jcyjA20007);重庆工商大学科研启动项目(2016-56-01)
通讯作者:  lyuxiaoshu@zju.edu.cn   
作者简介:  张贤明,教育部废油资源化技术与装备工程研究中心主任,二级教授,硕士及博后导师,国务院特贴专家、全国杰出专业技术人才。主持国家项目8项、省部级等项目40多项;研发油处理产品32个系列;获专利授权30多项;出版著作8部、发表论文190余篇。吕晓书,副研究员。2015年毕业于浙江大学环境与资源学院环境工程专业,获得工学博士学位,2013—2014年在美国Brown University工程系进行联合培养。主要从事环境科学和工程相关的科研工作,特别是纳米材料的设计制备及其在环境污染修复等领域的应用。先后主持及参与了国家重大水专项1项、国家自然科学基金项目4项、教育部博士点基金1项、重庆市自然科学基金1项、重庆市教委科技研究项目1项,以及校内开放平台项目等多项科研项目。
引用本文:    
秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
QIN Xiaofeng, CAO Jiazhen, WANG Xiaoli, ZHANG Xianming, LYU Xiaoshu. Nanoscale Zero Valent Iron-based Optimization System and Their Application in Environmental Remediation: a Review. Materials Reports, 2019, 33(9): 1550-1557.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18020025  或          http://www.mater-rep.com/CN/Y2019/V33/I9/1550
1 Gould J P. Water Research,1982,16(6),871.
2 Senzaki T, Kumagai Y. Kogyo Yosui,1988,367(2),2.
3 Gillham R, O’Hannesin S. Ground Water,1994,32,958.
4 Glavee G N, Klabunde K J, Sorensen C M, et al. Inorganic Chemistry,1995,34(1),28.
5 Wang C B, Zhang W X. Environmental Science & Technology,1997,31(18),9602.
6 Bae S, Gim S, Kim H, et al. Applied Catalysis B Environmental,2016,182,541.
7 Phenrat T, Saleh N, Sirk K, et al. Environmental Science & Technology,2007,41(1),284.
8 Calderon B, Fullana A. Water Research,2015,83,1.
9 Wang Q, Lee S, Choi H. Journal of Physical Chemistry C,2010,114(5),2027.
10 Zhao X, Liu W, Cai Z, et al. Water Research,2016,100,245.
11 Zou Y, Wang X, Khan A, et al. Environmental Science & Technology,2016,50(14),7290.
12 Jiang Z, Lyu L, Zhang W, et al. Water Research, 2011, 45(6),2191.
13 Xiao J, Gao B, Yue Q, et al. Journal of the Taiwan Institute of Chemical Engineers,2015,55,152.
14 Sheng G, Alsaedi A, Shammakh W, et al. Carbon,2015,99,123.
15 Qiu X, Fang Z, Liang B, et al. Journal of Hazardous Materials,2011,193(20),70.
16 Thostenson E T, Ren Z, Chou T W. Composites Science & Technology,2001,61(13),1899.
17 Lv X, Xu J, Jiang G, et al. Chemosphere,2011,85(7),1204.
18 Kanel S R, Choi H. Water Science & Technology A Journal of the International Association on Water Pollution Research,2007,55(1-2),157.
19 He F, Zhang M, Qian T, et al. Journal of Colloid and Interface Science,2009,334(1),96.
20 Wei Y T, Wu S C, Yang S W, et al. Journal of Hazardous Materials, 2011, 211-212,373.
21 Liu T, Yang Y, Wang Z L, et al. Chemical Engineering Journal,2016,288(10),739.
22 Wang Y, Fang Z, Kang Y, et al. Journal of Hazardous Materials,2014,275(2),230.
23 Wang X, Wang P, Ma J, et al. Applied Surface Science,2015,345,57.
24 Murugan S, Paulpandian P. International Journal of Current Research,2013,7(5),1670.
25 Zhao X, Dou X, Mohan D, et al. Chemical Engineering Journal,2014,247(7),250.
26 Jiao C, Cheng Y, Fan W, et al. International Journal of Environmental Science & Technology,2015,12(5),1603.
27 Luo S, Lu T, Peng L, et al. Journal of Materials Chemistry A,2014,2(37),15463.
28 Stefaniuk M, Oleszczuk P, Yong S O. Chemical Engineering Journal,2016,287,618.
29 Morjan I, Dumitrache F, Alexandrescu R, et al. Advanced Powder Technology,2012,23(1),88.
30 Chen H J, Huang S Y, Zhang Z B, et al. Acta Chimica Sinica, 2017,75(6),560(in Chinese).
陈海军,黄舒怡,张志宾,等.化学学报,2017,75(6),560.
31 Cheng R, Zhou W, Wang J L, et al. Journal of Hazardous Materials,2010,180(1-3),79.
32 Yan W, Herzing A A, Li X Q, et al. Environmental Science & Technology,2010,44(11),4288.
33 Chen G S,Liu Q W. Journal of Jiangxi Institute of Education,2001,22(3),30(in Chinese).
陈国树,刘钦伟.江西教育学院学报,2001,22(3),30.
34 Lyu X S, Qiu Y, Wang Z Y, et al. Environmental Science-Nano,2016,3(5),1215.
35 Kanel S R, Greneche J M, Choi H. Environmental Science & Technology,2006,40(6),2045.
36 Efecan N, Shahwan T, Erog Lu A E, et al. Desalination,2009,249(3),1048.
37 Liu Q, Bei Y, Zhou F. Central European Journal of Chemistry,2009,7(1),79.
38 Chen J. Removal of the Cu2+and Cr6+in the mine wastewater by using the nanoscale zero-valent ironsupported on activated carbon. Master’s Thesis,Jiangxi University of Science and Technology, China,2016(in Chinese).
陈健.活性炭负载纳米零价铁去除矿山废水中Cu2+和Cr6+的研究.硕士学位论文,江西理工大学,2016.
39 Arshadi M, Abdolmaleki M K, Mousavinia F, et al. Journal of Colloid & Interface Science,2017,486,296.
40 Boparai H K, Joseph M, O’Carroll D M. Journal of Hazardous Materials,2011,186(1),458.
41 Su F C. Synthesis of nanoscale zero valent iron composhes for removal of arsenic. Master’s Thesis,Anhui University,China, 2016(in Chinese).
苏凤朝.负载纳米零价铁复合材料的制备及去除砷的研究.硕士学位论文,安徽大学,2016.
42 Yang Y L, Zhou Z M, Deng W N,et al. Environmental Chemistry,2017,36(3),598.
杨艺琳,周孜迈,邓文娜,等.环境化学,2017,36(3),598.
43 Mosaferi M, Nemati S, Khataee A, et al. Journal of Environmental Health Science & Engineering,2014,12(1),74.
44 Tang J, Tang L, Feng H P,et al. Acta Chimica Sinica,2017,75(6),575(in Chinese).
汤晶,汤琳,冯浩朋,等.化学学报,2017,75(6),575.
45 Arancibia-Miranda N, Baltazar S E, García A, et al. Journal of Hazar-dous Materials,2016,301,371.
46 Li J, Chen C, Zhu K, et al. Journal of the Taiwan Institute of Chemical Engineers,2016,59(1),389.
47 Vinod V T P, Wacławek S, Senan C,et al. RSC Advances,2017,7,13997.
48 Wang R. Removal of chromium(VI)from wastewater by Mg-aminoclay coated nanoscale zero valent iron. Master’s Thesis,Huaqiao University,China,2017(in Chinese).
王蓉.镁氨基粘土(MgAC)包覆纳米零价铁(nZVI)去除废水中Cr(Ⅵ).硕士学位论文,华侨大学,2017.
49 Li X Q, Elliot D W, Zhang W X. Critical Reviews in Solid State & Mate-rials Sciences,2006,31(4),111.
50 He F, Zhao D. Environmental Science & Technology,2005,39(9),3314.
51 Oleszczuk P, Kołtowski M. Chemosphere,2017,168,1467.
52 Chuang N K U, F W, Larson R A, Wessman M S. Environmental Science & Technology,1995,29(9),2460.
53 Zhu N M. Reductive Dechlorination of Polychlorinated Biphenyls by Zerovalent Iron in Subcritical Water. Ph. D. Thesis, Chinese Academy of Sciences, China, 2011(in Chinese).
朱能敏.多氯联苯在亚临界水中的催化脱氯特性研究.博士学位论文,中国科学研究院,2011.
54 Yak H K, B W W, Cheng I F, et al. Environmental Science & Technology,1999,33(8),1307.
55 Lowry G V, Johnson K M. Environmental Science & Technology,2004,38(19),5208.
56 Lowry G V, Johnson K M. Environmental Science & Technology,1999,33(8),1307.
57 Fan W J. The research on removal of heavy metal and trichloroethylene from a queous splution by coated nano-zero valent iron. Master’s Thesis,Jingdezhen Ceramic Institute, China,2015(in Chinese).
樊文井.包覆型纳米零价铁处理水中重金属和三氯乙烯的研究.硕士学位论文,景德镇陶瓷学院,2015.
58 Bardos P, Bone B, Daly P, et al. NanoRem Project,2014,10(21),5036.
59 Pilkington N J. Journal of the Less Common Metals,1990,161(2),203.
60 Barbara K, Todd K, Martha O. Ciência & Saúde Coletiva,2011,16(1),165.
61 Gao Y, Wang F, Wu Y, et al. Chemical Engineering Journal,2016,285,459.
62 Dehghan S, Kalantari R R, Azari A. Journal of Mazandaran University of Medical Sciences,2017,27(148),100.
63 Xin X, Sun S, Wang M, et al. Water Science & Technology Water Supply,2017,17(4),2017003.
[1] 关文学, 周键, 王三反, 李艳红. 等离子体技术接枝苯磺酸甜菜碱改性对离子交换膜电阻的影响[J]. 材料导报, 2019, 33(z1): 462-465.
[2] 柴凡超, 常树全, 王国辉, 姚初请, 戴耀东. 辐射改性对铅/铜高分子辐射屏蔽材料性能的影响[J]. 材料导报, 2019, 33(z1): 444-447.
[3] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[4] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[5] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[6] 谢鹏飞, 陈勰, 丁峰, 张乃文, 李建波, 任杰. 缩聚法制备热固性聚乳酸及其力学性能和热稳定性研究[J]. 材料导报, 2019, 33(6): 1042-1046.
[7] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[8] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[9] 代培, 马慧玲, 矫阳, 翟茂林, 曾心苗. 纳米碳材料的辐射改性及其应用进展[J]. 材料导报, 2019, 33(3): 375-385.
[10] 许世鸣, 张小锋, 刘敏, 邓春明, 邓畅光, 牛少鹏. APS制备7YSZ热障涂层镀铝改性的抗氧化性[J]. 材料导报, 2019, 33(2): 283-287.
[11] 何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
[12] 仇磊, 陈鼎, 朱莉莉, 陈耀彤, 王思远, 冯鹏飞. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643.
[13] 常悦, 陈支泽, 杨一奇. 聚乳酸-聚己内酯多嵌段立构复合物薄膜的制备及熔融稳定性[J]. 材料导报, 2019, 33(16): 2808-2812.
[14] 李萍,左迎峰,吴义强,赵星,王健. 秸秆人造板制造及应用研究进展[J]. 材料导报, 2019, 33(15): 2624-2630.
[15] 安文,马建中,徐群娜. 功能型酪素基复合材料的研究进展[J]. 材料导报, 2019, 33(15): 2602-2609.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed