Please wait a minute...
材料导报  2019, Vol. 33 Issue (17): 2882-2889    https://doi.org/10.11896/cldb.18070213
  无机非金属及其复合材料 |
聚酰胺胺改性纳米二氧化硅的研究进展
何海峰1,寇新秀1,吕海亮2,白瑞钦1,刘欣1,靳涛1
1 山东科技大学材料科学与工程学院,青岛 266590
2 山东科技大学化学与环境工程学院,青岛 266590
Research Developments of Nano-silica Modified by Poly(amide-amine)
HE Haifeng1, KOU Xinxiu1, LYU Hailiang2, BAI Ruiqin1, LIU Xin1, JIN Tao1
1 College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590
2 College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590
下载:  全 文 ( PDF ) ( 9793KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 二氧化硅表面改性是解决其团聚的重要途径,该方法不仅可以提高纳米粒子在水相介质中的分散性,还可改善二氧化硅与有机相的相容性,因此具有重要的理论意义和应用价值。目前,粉体改性的理论依据主要集中于物理吸附理论、化学键理论、配位理论等。常用的纳米二氧化硅改性剂有离子型聚合物(聚乙烯亚胺、马来酰亚胺丙基三甲基氯化铵、聚甲基丙烯酸钠等)、非离子型聚合物(聚氨酯等)以及偶联剂(钛酸酯偶联剂、硅烷偶联剂等),对应的改性方法有分子自组装、嫁接技术、化学沉积技术、干法改性和湿法改性等。
   聚酰胺胺(PAMAM)树枝状大分子具有结构规整、分子量可控、枝端有较多功能团等独特性质,其反应活性较高,在纳米粒子制备、分子载体、催化剂、重金属离子的分离与提纯等领域得到了广泛研究和运用。通常,以PAMAM大分子改性二氧化硅时多采用间接方式,即首先在二氧化硅粉体表面引入-NH2基团,再利用聚合接枝的方式合成聚酰胺胺分子。但在搅拌和加热的作用下,羟基所键合的硅烷片段可能存在断裂的情况(如-CH2-CH2-键),合成过程中难以避免副反应的发生,合成产物的分子量、分子链的长短都较难控制,且还存在各种复杂因素的影响,导致这种方法效率不高。笔者提出采用PAMAM大分子直接干法改性二氧化硅的方式,实验过程中避免了水分的参与,二氧化硅表面保持较多的活性点,可直接利用改性剂分子PAMAM(中心核原子、酰胺中心、枝端胺基等)与这些活性点的耦合作用形成配体结构,从而达到改性的目的,同时简化改性工艺,降低操作成本。
   本文首先介绍了PAMAM对二氧化硅的改性方法, 接着从重金属离子的吸附和分离、生物技术、在介质和涂料涂层中的分散性以及催化载体四个方面对PAMAM改性二氧化硅的应用进行了着重分析总结,以期为制备性能更优异、更稳定的改性纳米二氧化硅提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何海峰
寇新秀
吕海亮
白瑞钦
刘欣
靳涛
关键词:  聚酰胺胺  纳米二氧化硅  嫁接技术  密度泛函理论  干法改性    
Abstract: Surface modification of nano-silica is an important way to solve nanometer powder agglomeration, it can not only improve the dispersibility of nano-silica in aqueous phase medium, but also improve its compatibility with organic phase. Therefore, surface modification of nano-silica has important theoretical significance and application value.
At present, the theoretical basis of powder modification mainly focuses on physical adsorption theory, chemical bond theory and coordination theory, etc. The commonly used nano-silica modifiers are ionic polymers (polyethylenimine, maleimide propyltrimethylammonium chloride, polysodium methacrylate, etc.), non-ionic polymers (polyurethane, etc.), and coupling agents (titanate coupling agent, silane coupling agent, etc.), and the modification methods include molecular self-assembly, grafting, chemical deposition, dry modification and wet modification, etc.
Poly(amide-amine) (PAMAM) has been extensively studied and utilized in many fields such as the preparation of nanoparticles, molecular carrier, catalyst and separation and purification of heavy metal ions because of its regular dendrimer structure, controllable molecular weight and multi-functional group, and high reactivity. Most of the modification strategies are conducted indirectly, that is, the -NH2 group is firstly introduced onto the surface of SiO2 powder, then PAMAM molecules are synthesized by means of polymerization. However, as silane fragments bonded by hydroxyl may break under the effect of stirring and heating (such as -CH2-CH2-), it is difficult to avoid the occurrence of side reactions in the synthesis process, and the molecular weight and length of the molecular chain of the synthetic products are difficult to control. As a result, the efficiency of this method is not high. Our group proposed to adopt PAMAM macromolecular to modify silica directly through dry modification method, which can avoid the participation of moisture, and the surface of silica retain more active points. The aim of modification can be achieved by directly coupling the modifier molecular PAMAM (central nuclear nitrogen atom, amide center, chain terminated amine group, etc.) with these active points on the surface of silicon dioxide to form ligand structure, at the same time, the modification process is simplified and the operating cost is reduced.
In this paper, the modification methods of PAMAM for silicon dioxide are introduced firstly, then the application of PAMAM modified silicon dio-xide is introduced emphatically from four aspects, including adsorption and separation of heavy metal ions, biotechnology, dispersibility in medium and coatings, and catalytic carriers in order to provide reference for the preparation of modified nano-silica with better performance and stability.
Key words:  poly(amide-amine)    nano silicon dioxide    grafting technology    density-functional theory    dry modification
               出版日期:  2019-09-10      发布日期:  2019-07-23
ZTFLH:  O643  
基金资助: 山东科技大学校级创新团队(2014TDJH104)
作者简介:  何海峰,2006年5月—2008年8月在美国南密西西比大学和东密歇根大学做博士后研究工作,从事生物功能高分子合成和功能涂料研究。自2008年9月入职山东科技大学以来,承担“聚合物加工原理与成型工艺”,“高分子复合材料”,“高分子合成技术”,“聚合物合成原理”等课程的教学,以及功能涂料、纳米粉体改性、塑料改性等的研究工作。目前在相关领域期刊发表论文9篇,授权专利4项。
靳涛,2017年3月—2018年3月作为高级访问学者在澳大利亚联邦科学与工业研究组织从事石墨烯改性与应用研究;2010年12月—2012年11月,在北京化工大学材料科学与工程学科博士后流动站从事纳米粉体改性理论研究工作。自2002年入职山东科技大学以来,承担“物理化学”,“材料热力学”等课程的教学,以及高分子合成、生物医用材料、纳米粉体改性、石墨烯应用开发等的研究工作。目前在相关领域的Journal of Hazardous Materials, European Polymer science, Science and Technology of Advanced Materials, Progress in Organic Coating, Surface and Interface Analysis, Chemistry Letters, Surface and Coatings Technology, Journal of Molecular Structure, Chinese Journal of Chemical Physics, International Journal of Quantum Chemistry等期刊发表15篇SCI论文,授权专利4项,为多种SCI期刊审稿。
引用本文:    
何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
HE Haifeng, KOU Xinxiu, LYU Hailiang, BAI Ruiqin, LIU Xin, JIN Tao. Research Developments of Nano-silica Modified by Poly(amide-amine). Materials Reports, 2019, 33(17): 2882-2889.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18070213  或          http://www.mater-rep.com/CN/Y2019/V33/I17/2882
1 Jin T, Li X Y, Sun H Q.International Journal of Quantum Chemistry, 2013, 113,1213.2 Jin T, Li X Y.Chinese Journal of Chemical Physics, 2012, 25,592.3 He X X, Wu X, Wang K M, et al. Biomaterials, 2009, 30,5601.4 He X X, Liu F, Wang K M, et al.Science Bulletin, 2006, 51(10),1156(in Chinese). 何晓晓, 刘芳, 王柯敏,等.科学通报, 2006, 51(10),1156. 5 Moete S J, Sugerman G, Seeman D Z. In: 32nd Annual Technical Conference. San Francisco,California, 1977, pp.12.6 Bourgeat-Lami E, Lang J.Journal of Colloid and Interface Science, 1998, 197, 293.7 Oyama H T, Sprycha R, Xie Y, et al. Journal of Colloid and Interface Science, 1993,160,298.8 Liufu S C, Xiao H N, Li Y P. Journal of Colloid and Interface Science, 2005, 285,33.9 Liufu S C, Xiao H N, Li Y P. Journal of Colloid and Interface Science, 2005, 281,155.10 Zheng S L, Li Y, Luo J J. Non-Metallic Mines, 2002, 25(7),25(in Chinese). 郑水林, 李杨,骆剑军. 非金属矿, 2002, 25(7),25.11 Nsib F, Ayed N, Chevalier Y. Progress in Organic Coatings, 2007, 60,267.12 Zaman A A, Tsuchiya R, Moudgil B M. Journal of Colloid and Interface Science, 2002,256,73.13 Nsib F, Ayed N, Chevalier Y. Progress in Organic Coatings, 2006, 55,303.14 Carriere P, Feller J F, Dupuis D, et al. Journal of Colloid and Interface Science, 2004,272,218.15 Tsubokawa N, Takayama T. Reactive and Functional Polymers, 2000, 43,341.16 Tsubokawa N, Ichioka H, Satoh T, et al. Reactive and Functional Polymers, 1998, 37,75.17 Jin T, Lyu H L. Chinese Journal of Chemical Physics, 2013, 26,277.18 Qu R J, Niu Y Z, Sun C M, et al.Microporous and Mesoporous Materials, 2006,97,58.19 Price P M, Clark J H, Macquarrie D J. Journal of the Chemical Society, 2000, 1,101.20 Zaitoun M A, Lin C T. The Journal of Physical Chemistry B, 1997, 101,1857.21 Jradi K, Laour D, Daneault C, et al.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374,33.22 Moon J H, Kim J H, Kim K J, et al.Langmuir,1997,13(16),4305.23 Jung D H, Park I J, Choi Y K, et al. Langmuir, 2002, 18, 6133.24 Ruckenstein E, Yin W. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 38 (9),1443.25 Pu W F, Liu R, Wang K Y, et al. Industrial & Engineering Chemistry Research, 2015, 54,798.26 Fubini B. Health effects of silica, Wiley, New York, 1998.27 Schrader R, Wissing R, Kubsch H. Zeitschrift für Anorganische und Allgemeine Chemie, 1969, 365,191.28 Hochstrasser G, Antoni J F. Surface Science, 1972, 32,644.29 Murashov V. Journal of Molecular Structure, 2003, 650,141. 30 Tarazona-Vasquez F, Balbuena P B.The Journal of Physical Chemistry A, 2007, 111,945.31 Tarazona-Vasquez F, Balbuena P B.The Journal of Physical Chemistry B, 2008, 112,4172.32 Tarazona-Vasquez F, Balbuena P B. The Journal of Physical Chemistry B, 2005, 109,12480.33 Manna A. Imae T, Aoi K, et al. Chemistry of Materials, 2001, 13,1674.34 Davis A P, Ma G, Allen H C. Analytica Chimica Acta, 2003, 496,117.35 Furer N, Stranger R, Moran G, et al. Inorganic Chemistry, 1992,31 (13),2860.36 Kovalenko S A,Karunakaran V, Kleinermanns K, et al.Journal of the American Chemical Society, 2009, 131(16),5839.37 Niu Y Z, Qu R J, Chen H, et al.Journal of Hazardous Materials, 2014, 278 (15),267.38 Qu R J, Ma X, Wang M H, et al.Journal of Industrial and Engineering Chemistry, 2014, 20(6),4382.39 Niu Y Z, Qu R J, Sun C M, et al.Journal of Hazardous Materials, 2013, 244-245(15),276.40 Qu R J, Sun C M, Ma F, et al. Fuel, 2012, 92(1),204.41 Shahbazi A, Younesi H, Badiei A.Chemical Engineering Journal,2011, 168(2),505.42 Qu R J, SongX T, Niu Y Z, et al. Fuel, 2017, 199,91.43 Qu R J, Sun C M, Ma F, et al. Fuel, 2018, 219,205.44 Zhang P P, Niu Y Z, Qiao W Z, et al. Journal of Molecular Liquids, 2018, 263,390.45 Jiang Y J, Gao Q M, Yu H G, et al.Microporous and Mesoporous Mate-rials, 2007,103,316.46 Zhang C T, Su P, Faroog M U, et al. Reactive and Functional Polymers, 2010, 70,129.47 Zhang Z, Yang Y. Chemical Journal of Chinese Universities-Chinese, 2006, 27(1),47.48 Wang S M, Su P, Ding F Y, et al. Journal of Molecular Catalysis B: Enzymatic, 2013, 89,35.49 Tao X, Yang Y J, Liu S, et al. Acta Biomaterialia, 2013,9(5),6431.50 Yesil-Celiktas O, Pala C, et al. Analytical Biochemistry, 2017, 519,1.51 Chen X, Liu Z N. Journal of Materials Chemistry B, 2016, 4(25),4382.52 Yoshikawa S, Satoha T, Tsubokawa N. Colloids and Surfaces A, 1999, 153,395.53 Esumi K, Nakaie Y, Sakai K, et al.Colloids and Surfaces A, 2001, 194,7.54 Gregor H P, Luttinger L B, Loebl E M. The Journal of Chemical Physics, 1955, 59,34.55 Jin T, Zhang F. Progress in Organic Coatings, 2013,72,447.56 Jin T. Applied mechanics and materials, Elsevier, Amsterdam, 2012.57 Beakley L W, Yost S E, Cheng R, et al.Applied Catalysis A: General, 2013, 292,124.58 Auten B J, Lang H, Chandler B D.Applied Catalysis B: Environmental, 2008, 81,225.59 Albiter M A, Morales R, Zaera F. Applied Catalysis A: General, 2011, 391,386.60 Touzani R, Alper H. Journal of Molecular Catalysis A: Chemical, 2012, 227,197.61 Wang Q L, Zhang Y W, Zhou Y M, et al. Journal of Inorganic and Organometallic Polymers, 2016, 26, 702.62 Nemanashi M, Noh J H, Meijboom R. Applied Catalysis A: General, 2018, 550, 77.63 Wu H, Liu Z, Wang X, et al. Journal of Colloid and Interface Science, 2009, 302,142.64 Dang G F, Shi Y, Fu Z F, et al. Journal of Colloid and Interface Science, 2012, 369(1),170.65 Esumi K, Isono R, Yoshimura T. Langmuir, 2004, 20(1),237.66 Jin T, Kong F M. Surface and Interface Analysis, 2015, 47, 474.67 Jin T, Kong F M, Bai R Q. Chemistry Letters, 2015, 44, 943.68 Jin T, Easton C D, Yin H, et al.Science and Technology of Advanced Materials, 2018,19, 381.69 Jin T, Han Y, Bai R. Journal of Nanoscience and Nanotechnology, 2018,18,4971.70 Jin T, Wang Y, Yin H. Journal of Nanoscience and Nanotechnolog, 2018,18, 4992.71 Jin T, Easton C D, Tang Y, et al. Journal of Hazardous Materials, 2018,357, 100.72 Jin T, Kong F, Bai R, et al. Frontiers of Materials Science, 2016,10, 367.
[1] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[2] 王宇鲲, 魏永刚, 彭博, 李博, 周世伟. 镁质贫镍红土矿热分解理论计算与实验研究[J]. 材料导报, 2019, 33(8): 1406-1411.
[3] 陈军, 闵凡飞, 刘令云. 煤泥水中微细煤与高岭石颗粒间微观作用的密度泛函研究[J]. 材料导报, 2019, 33(16): 2677-2683.
[4] 吴苗苗李洺阳, 李鸿鹏, 张翔, 魏雪虎, 杨志宾, 马向东. BxSy、BxSey (x=1、2, y=1—6)团簇结构的计算模拟研究[J]. 材料导报, 2019, 33(10): 1646-1651.
[5] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[6] 解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
[7] 赵兴华, 刘维慧, 李春, 元光. NO3为配体的超卤素/飙卤素的理论研究[J]. 材料导报, 2018, 32(20): 3531-3534.
[8] 黄俊, 李荣兴, 谢刚, 田林, 杨妮, 俞小花, 李威. 金红石型TiO2(110)表面吸附TiCl4的微观机理[J]. 材料导报, 2018, 32(20): 3524-3530.
[9] 栾扬,赵志曼,全思臣,曾众,吴佳丽,梁祎. 基于密度泛函理论研究磷建筑石膏晶体表面吸附丁二酸转晶机理[J]. 《材料导报》期刊社, 2018, 32(12): 2118-2123.
[10] 孔 慧,刘卫丽,宋志棠. 一种非球形纳米二氧化硅颗粒制备新方法[J]. 《材料导报》期刊社, 2018, 32(10): 1683-1687.
[11] 刘建国, 安振涛, 张倩, 杜仕国, 姚凯, 王金. 硝酸羟胺的热稳定性评估及热分解机理研究*[J]. 《材料导报》期刊社, 2017, 31(4): 145-152.
[12] 王 茹,张绍康,王高勇. 矿物外加剂对丁苯聚合物/水泥复合胶凝材料凝结硬化过程的影响及机制[J]. 《材料导报》期刊社, 2017, 31(24): 69-73.
[13] 张秀芝,刘明乐,杜笑寒,杨祥子,周宗辉. 纳米SiO2与粉煤灰协同改性水泥基材料性能研究[J]. 《材料导报》期刊社, 2017, 31(24): 50-55.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed