Research Developments of Nano-silica Modified by Poly(amide-amine)
HE Haifeng1, KOU Xinxiu1, LYU Hailiang2, BAI Ruiqin1, LIU Xin1, JIN Tao1
1 College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590 2 College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590
Abstract: Surface modification of nano-silica is an important way to solve nanometer powder agglomeration, it can not only improve the dispersibility of nano-silica in aqueous phase medium, but also improve its compatibility with organic phase. Therefore, surface modification of nano-silica has important theoretical significance and application value. At present, the theoretical basis of powder modification mainly focuses on physical adsorption theory, chemical bond theory and coordination theory, etc. The commonly used nano-silica modifiers are ionic polymers (polyethylenimine, maleimide propyltrimethylammonium chloride, polysodium methacrylate, etc.), non-ionic polymers (polyurethane, etc.), and coupling agents (titanate coupling agent, silane coupling agent, etc.), and the modification methods include molecular self-assembly, grafting, chemical deposition, dry modification and wet modification, etc. Poly(amide-amine) (PAMAM) has been extensively studied and utilized in many fields such as the preparation of nanoparticles, molecular carrier, catalyst and separation and purification of heavy metal ions because of its regular dendrimer structure, controllable molecular weight and multi-functional group, and high reactivity. Most of the modification strategies are conducted indirectly, that is, the -NH2 group is firstly introduced onto the surface of SiO2 powder, then PAMAM molecules are synthesized by means of polymerization. However, as silane fragments bonded by hydroxyl may break under the effect of stirring and heating (such as -CH2-CH2-), it is difficult to avoid the occurrence of side reactions in the synthesis process, and the molecular weight and length of the molecular chain of the synthetic products are difficult to control. As a result, the efficiency of this method is not high. Our group proposed to adopt PAMAM macromolecular to modify silica directly through dry modification method, which can avoid the participation of moisture, and the surface of silica retain more active points. The aim of modification can be achieved by directly coupling the modifier molecular PAMAM (central nuclear nitrogen atom, amide center, chain terminated amine group, etc.) with these active points on the surface of silicon dioxide to form ligand structure, at the same time, the modification process is simplified and the operating cost is reduced. In this paper, the modification methods of PAMAM for silicon dioxide are introduced firstly, then the application of PAMAM modified silicon dio-xide is introduced emphatically from four aspects, including adsorption and separation of heavy metal ions, biotechnology, dispersibility in medium and coatings, and catalytic carriers in order to provide reference for the preparation of modified nano-silica with better performance and stability.
作者简介: 何海峰,2006年5月—2008年8月在美国南密西西比大学和东密歇根大学做博士后研究工作,从事生物功能高分子合成和功能涂料研究。自2008年9月入职山东科技大学以来,承担“聚合物加工原理与成型工艺”,“高分子复合材料”,“高分子合成技术”,“聚合物合成原理”等课程的教学,以及功能涂料、纳米粉体改性、塑料改性等的研究工作。目前在相关领域期刊发表论文9篇,授权专利4项。 靳涛,2017年3月—2018年3月作为高级访问学者在澳大利亚联邦科学与工业研究组织从事石墨烯改性与应用研究;2010年12月—2012年11月,在北京化工大学材料科学与工程学科博士后流动站从事纳米粉体改性理论研究工作。自2002年入职山东科技大学以来,承担“物理化学”,“材料热力学”等课程的教学,以及高分子合成、生物医用材料、纳米粉体改性、石墨烯应用开发等的研究工作。目前在相关领域的Journal of Hazardous Materials, European Polymer science, Science and Technology of Advanced Materials, Progress in Organic Coating, Surface and Interface Analysis, Chemistry Letters, Surface and Coatings Technology, Journal of Molecular Structure, Chinese Journal of Chemical Physics, International Journal of Quantum Chemistry等期刊发表15篇SCI论文,授权专利4项,为多种SCI期刊审稿。
引用本文:
何海峰,寇新秀,吕海亮,白瑞钦,刘欣,靳涛. 聚酰胺胺改性纳米二氧化硅的研究进展[J]. 材料导报, 2019, 33(17): 2882-2889.
HE Haifeng, KOU Xinxiu, LYU Hailiang, BAI Ruiqin, LIU Xin, JIN Tao. Research Developments of Nano-silica Modified by Poly(amide-amine). Materials Reports, 2019, 33(17): 2882-2889.
Jin T, Li X Y, Sun H Q.International Journal of Quantum Chemistry, 2013, 113,1213.2 Jin T, Li X Y.Chinese Journal of Chemical Physics, 2012, 25,592.3 He X X, Wu X, Wang K M, et al. Biomaterials, 2009, 30,5601.4 He X X, Liu F, Wang K M, et al.Science Bulletin, 2006, 51(10),1156(in Chinese). 何晓晓, 刘芳, 王柯敏,等.科学通报, 2006, 51(10),1156. 5 Moete S J, Sugerman G, Seeman D Z. In: 32nd Annual Technical Conference. San Francisco,California, 1977, pp.12.6 Bourgeat-Lami E, Lang J.Journal of Colloid and Interface Science, 1998, 197, 293.7 Oyama H T, Sprycha R, Xie Y, et al. Journal of Colloid and Interface Science, 1993,160,298.8 Liufu S C, Xiao H N, Li Y P. Journal of Colloid and Interface Science, 2005, 285,33.9 Liufu S C, Xiao H N, Li Y P. Journal of Colloid and Interface Science, 2005, 281,155.10 Zheng S L, Li Y, Luo J J. Non-Metallic Mines, 2002, 25(7),25(in Chinese). 郑水林, 李杨,骆剑军. 非金属矿, 2002, 25(7),25.11 Nsib F, Ayed N, Chevalier Y. Progress in Organic Coatings, 2007, 60,267.12 Zaman A A, Tsuchiya R, Moudgil B M. Journal of Colloid and Interface Science, 2002,256,73.13 Nsib F, Ayed N, Chevalier Y. Progress in Organic Coatings, 2006, 55,303.14 Carriere P, Feller J F, Dupuis D, et al. Journal of Colloid and Interface Science, 2004,272,218.15 Tsubokawa N, Takayama T. Reactive and Functional Polymers, 2000, 43,341.16 Tsubokawa N, Ichioka H, Satoh T, et al. Reactive and Functional Polymers, 1998, 37,75.17 Jin T, Lyu H L. Chinese Journal of Chemical Physics, 2013, 26,277.18 Qu R J, Niu Y Z, Sun C M, et al.Microporous and Mesoporous Materials, 2006,97,58.19 Price P M, Clark J H, Macquarrie D J. Journal of the Chemical Society, 2000, 1,101.20 Zaitoun M A, Lin C T. The Journal of Physical Chemistry B, 1997, 101,1857.21 Jradi K, Laour D, Daneault C, et al.Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 374,33.22 Moon J H, Kim J H, Kim K J, et al.Langmuir,1997,13(16),4305.23 Jung D H, Park I J, Choi Y K, et al. Langmuir, 2002, 18, 6133.24 Ruckenstein E, Yin W. Journal of Polymer Science Part A: Polymer Chemistry, 2015, 38 (9),1443.25 Pu W F, Liu R, Wang K Y, et al. Industrial & Engineering Chemistry Research, 2015, 54,798.26 Fubini B. Health effects of silica, Wiley, New York, 1998.27 Schrader R, Wissing R, Kubsch H. Zeitschrift für Anorganische und Allgemeine Chemie, 1969, 365,191.28 Hochstrasser G, Antoni J F. Surface Science, 1972, 32,644.29 Murashov V. Journal of Molecular Structure, 2003, 650,141. 30 Tarazona-Vasquez F, Balbuena P B.The Journal of Physical Chemistry A, 2007, 111,945.31 Tarazona-Vasquez F, Balbuena P B.The Journal of Physical Chemistry B, 2008, 112,4172.32 Tarazona-Vasquez F, Balbuena P B. The Journal of Physical Chemistry B, 2005, 109,12480.33 Manna A. Imae T, Aoi K, et al. Chemistry of Materials, 2001, 13,1674.34 Davis A P, Ma G, Allen H C. Analytica Chimica Acta, 2003, 496,117.35 Furer N, Stranger R, Moran G, et al. Inorganic Chemistry, 1992,31 (13),2860.36 Kovalenko S A,Karunakaran V, Kleinermanns K, et al.Journal of the American Chemical Society, 2009, 131(16),5839.37 Niu Y Z, Qu R J, Chen H, et al.Journal of Hazardous Materials, 2014, 278 (15),267.38 Qu R J, Ma X, Wang M H, et al.Journal of Industrial and Engineering Chemistry, 2014, 20(6),4382.39 Niu Y Z, Qu R J, Sun C M, et al.Journal of Hazardous Materials, 2013, 244-245(15),276.40 Qu R J, Sun C M, Ma F, et al. Fuel, 2012, 92(1),204.41 Shahbazi A, Younesi H, Badiei A.Chemical Engineering Journal,2011, 168(2),505.42 Qu R J, SongX T, Niu Y Z, et al. Fuel, 2017, 199,91.43 Qu R J, Sun C M, Ma F, et al. Fuel, 2018, 219,205.44 Zhang P P, Niu Y Z, Qiao W Z, et al. Journal of Molecular Liquids, 2018, 263,390.45 Jiang Y J, Gao Q M, Yu H G, et al.Microporous and Mesoporous Mate-rials, 2007,103,316.46 Zhang C T, Su P, Faroog M U, et al. Reactive and Functional Polymers, 2010, 70,129.47 Zhang Z, Yang Y. Chemical Journal of Chinese Universities-Chinese, 2006, 27(1),47.48 Wang S M, Su P, Ding F Y, et al. Journal of Molecular Catalysis B: Enzymatic, 2013, 89,35.49 Tao X, Yang Y J, Liu S, et al. Acta Biomaterialia, 2013,9(5),6431.50 Yesil-Celiktas O, Pala C, et al. Analytical Biochemistry, 2017, 519,1.51 Chen X, Liu Z N. Journal of Materials Chemistry B, 2016, 4(25),4382.52 Yoshikawa S, Satoha T, Tsubokawa N. Colloids and Surfaces A, 1999, 153,395.53 Esumi K, Nakaie Y, Sakai K, et al.Colloids and Surfaces A, 2001, 194,7.54 Gregor H P, Luttinger L B, Loebl E M. The Journal of Chemical Physics, 1955, 59,34.55 Jin T, Zhang F. Progress in Organic Coatings, 2013,72,447.56 Jin T. Applied mechanics and materials, Elsevier, Amsterdam, 2012.57 Beakley L W, Yost S E, Cheng R, et al.Applied Catalysis A: General, 2013, 292,124.58 Auten B J, Lang H, Chandler B D.Applied Catalysis B: Environmental, 2008, 81,225.59 Albiter M A, Morales R, Zaera F. Applied Catalysis A: General, 2011, 391,386.60 Touzani R, Alper H. Journal of Molecular Catalysis A: Chemical, 2012, 227,197.61 Wang Q L, Zhang Y W, Zhou Y M, et al. Journal of Inorganic and Organometallic Polymers, 2016, 26, 702.62 Nemanashi M, Noh J H, Meijboom R. Applied Catalysis A: General, 2018, 550, 77.63 Wu H, Liu Z, Wang X, et al. Journal of Colloid and Interface Science, 2009, 302,142.64 Dang G F, Shi Y, Fu Z F, et al. Journal of Colloid and Interface Science, 2012, 369(1),170.65 Esumi K, Isono R, Yoshimura T. Langmuir, 2004, 20(1),237.66 Jin T, Kong F M. Surface and Interface Analysis, 2015, 47, 474.67 Jin T, Kong F M, Bai R Q. Chemistry Letters, 2015, 44, 943.68 Jin T, Easton C D, Yin H, et al.Science and Technology of Advanced Materials, 2018,19, 381.69 Jin T, Han Y, Bai R. Journal of Nanoscience and Nanotechnology, 2018,18,4971.70 Jin T, Wang Y, Yin H. Journal of Nanoscience and Nanotechnolog, 2018,18, 4992.71 Jin T, Easton C D, Tang Y, et al. Journal of Hazardous Materials, 2018,357, 100.72 Jin T, Kong F, Bai R, et al. Frontiers of Materials Science, 2016,10, 367.