Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 977-982    https://doi.org/10.11896/j.issn.1005-023X.2018.06.023
  材料研究 |
超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究
解婕1, 2, 包桂蓉1, 2, 孟一鸣1, 2, 杨智翔1, 2, 何涛1, 2
1 省部共建复杂有色金属资源清洁利用国家重点实验室,昆明650093;
2 昆明理工大学冶金与能源工程学院,昆明 650093
Theoretical Analysis on Hydrodeoxygenation Processes of Dihydrobenzofuran in Supercritical Methanol
XIE Jie1, 2, BAO Guirong1, 2, MENG Yiming1, 2, YANG Zhixiang1, 2, HE Tao1, 2
1 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming 650093;
2 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 1225KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以2,3-二氢苯并呋喃(DHBF)作为木质素单体模型物,采用密度泛函理论B3LYP/6-31G++(d,p)方法对其在超临界甲醇中加氢脱氧的机理进行了研究。研究中,利用SMD溶剂化模型,考虑了甲醇的溶剂效应。研究结果表明:在活性氢的作用下2,3-二氢苯并呋喃的杂环断裂相对容易,主要加氢产物为2-乙基苯酚。而2-乙基苯酚又可能会进一步发生醇解和加氢脱氧两条反应路径,通过能量对比发现苯环上剩余位置均有醇解的可能性,但以生成2-乙基-6-甲基苯酚最为容易;而加氢脱氧反应中加氢过程优于氢解过程,且脂肪环上的C-O键比苯环上的C-O键更易断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解婕
包桂蓉
孟一鸣
杨智翔
何涛
关键词:  2  3-二氢苯并呋喃 加氢脱氧 密度泛函理论 醇解    
Abstract: Dihydrobenzofuran (DHBF) was used as lignin monomer model, and the mechanism of hydrodeoxygenation in supercritical methanol has been studied by density functional theory B3LYP/6-31G ++ (d, p). Solvent effects were considered using a SMD solvation model for methanol. As the result shows, the dihydrobenzofuran heterocyclic was relatively easy to be fractured under the action of active hydrogen, and the main hydrogenation product was 2-ethylphenol. 2-ethylphenol may further undergo two reaction paths including alcoholysis and hydrodeoxygenation. Each remaining position on the benzene ring has the possibility to be alcoholysised, especially 2-ethyl-6-methyl phenol, which was the easiest to be produced by energy comparison. The hydrogenation process in the hydrodeoxygenation process was superior to the hydrogenolysis process, and the C-O bond attached to aliphatic ring was easier to be broken than the C-O bond attached to benzene ring.
Key words:  dihydrobenzofuran    hydrodeoxygenation    density functional theroy    alcoholysis
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TB3  
  TQ2  
基金资助: 国家自然科学基金(51266003)
通讯作者:  包桂蓉,女,1969年生,硕士研究生导师,研究方向为生物质能的转化与利用 E-mail:1633940830@qq.com   
作者简介:  解婕:女,1988年生,硕士研究生,研究方向为生物质超临界甲醇中催化液化 E-mail:xiejie2014702009@163.com
引用本文:    
解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
XIE Jie, BAO Guirong, MENG Yiming, YANG Zhixiang, HE Tao. Theoretical Analysis on Hydrodeoxygenation Processes of Dihydrobenzofuran in Supercritical Methanol. Materials Reports, 2018, 32(6): 977-982.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.023  或          https://www.mater-rep.com/CN/Y2018/V32/I6/977
1 Tekin K, Karagöz S, Bektas S. A review of hydrothermal biomass processing[J].Renewable and Sustainable Energy Reviews,2014,40:673.
2 Li Ang, Liu Huili, Wang Hua, et al. Effects of temperature and heating rate on the characteristics of molded bio-chars[J].Bioresourses,2016,11(2):3259.
3 Song Qi, Cai Jiaying, Zhang Junjie, et al. Hydrogenation and clea-vage of the C-O bonds in the lignin model compound phenethyl phenyl ether over a nickel-based catalyst[J].Chinese Journal of Catalysis,2013,34(4):651.
4 Yu Yuxiao, Xu Ying, Wang Tiejun, et al. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J].Journal of Fuel Chemistry and Technology,2013,41(4):443(in Chinese).
于玉肖,徐莹,王铁军,等.木质素降解模型化合物愈创木酚及苯酚原位加氢制备环己醇[J].燃料化学学报,2013,41(4):443.
5 Tan Xuesong, Zhuang Xinshu, Lv Shuangliang, et al. Hydrodeoxygenation of guaiacol as lignin model compound for alkanes preparation with palladium-carbon catalysts[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(21):193(in Chinese).
谭雪松,庄新姝,吕双亮,等.钯炭催化木质素模型化合物愈创木酚加氢脱氧制备烷烃[J].农业工程学报,2012,28(21):193.
6 Barta K, Matson T D, Fettig M L, et al. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J].Green Chemistry,2010,12(9):1640.
7 Liu C, Wilson A K. Cleavage of the β-O-4 linkage of lignin using group 8 pincer complexes: A DFT study[J].Journal of Molecular Catalysis A:Chemical,2015,399:33.
8 Minami E, Kawamoto H, Saka S. Reaction behavior of lignin in supercritical methanol as studied with lignin model compounds[J].Journal of Wood Science,2003,49(2):158.
9 Wildschut J, Mahfud F H, Venderbosch R H, et al. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts[J].Journal of Molecular Catalysis A:Chemical,2009,48(23):10324.
10 Zhao C, Kou Y, Lemonidou A A, et al. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J].Angewandte Chemie,2009,48(22):3987.
11 Liu C, Shao Z, Xiao Z, et al. Hydrodeoxygenation of benzofuran over silica-alumina-supported Pt, Pd, and Pt-Pd catalysts[J].Energy Fuels,2012,26(7):4205.
12 Lin C, Li C, Wan H, et al. Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfide CoMo and NiMo catalysts[J].Energy Fuels,2011,25(3):890.
13 Li K, Wang R, Chen J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J].Energy Fuels,2011,25(3):854.
14 Wang Huajing, Zhao Yan, Wang Chen. Theoretical study on the pyrolysis process of lignin dimer modelcompounds[J].Acta Chimica Sinica,2009,67(9):893(in Chinese).
王华静,赵岩,王晨.木质素二聚体模型物裂解历程的理论研究[J].化学学报,2009,67(9):893.
15 Wu Shubin, Deng Yubin, Liu Chao. Theoretical analysis on pyrolysis processes of monomeric model compounds of lignin[J].Journal of South China University of Technology(Natural Science Edition),2014,42(10):70(in Chinese).
武书彬,邓裕斌,刘超.木质素单体模化物热解过程的理论分析[J].华南理工大学学报(自然科学版),2014,42(10):70.
16 Barta K, Matson T D, Fettig M L, et al. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J].Green Chemistry,2010,12(9):1640.
17 Mei D H, Xu L J, Henkalman G. Potential energy surface of methanol decomposition on Cu(110)[J].Journal of Physical Chemistry C,2009,113(11):4522.
18 Greeley J, Mayrikakis M. Methanol decomposition on Cu(111): A DFT study[J].Journal of Catalysis,2002,208(2):291.
19 Macala G S, Maston T D, Johnaon C L, et al. Hydrogen transfer from supercritical methanol over a solid base catalyst:A model for lignin depolymerization[J].ChemSusChem,2009,2(3):215.
20 Wang H M, Male J, Wang Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J].ACS Catalysis,2013,3(5):1047.
21 Garcia-Pintos D, Voss J, Jensen A D, et al. Hydrodeoxygenation of phenol to benzene and cyclohexane on Rh(111) and Rh(211) surfaces: Insights from density functional theory[J].The Journal of Physical Chemistry,2016,120:18529.
[1] 孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[4] 范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
[5] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[6] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[7] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[8] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[9] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[10] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[11] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[12] 陈进, 李默涵, 阮文琳, 孙涛, 刘晓英. SiO2纳米颗粒在润滑领域中的研究与应用现状[J]. 材料导报, 2024, 38(5): 23080225-9.
[13] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[14] 付晓辉, 李冠超, 王昱莹, 李小燕, 黄希, 刘小亮, 胡伟芳. 维生素B12改性纳米零价镍去除溶液中U(Ⅵ)的机理[J]. 材料导报, 2024, 38(4): 22040208-6.
[15] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed