Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 977-982    https://doi.org/10.11896/j.issn.1005-023X.2018.06.023
  材料研究 |
超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究
解婕1, 2, 包桂蓉1, 2, 孟一鸣1, 2, 杨智翔1, 2, 何涛1, 2
1 省部共建复杂有色金属资源清洁利用国家重点实验室,昆明650093;
2 昆明理工大学冶金与能源工程学院,昆明 650093
Theoretical Analysis on Hydrodeoxygenation Processes of Dihydrobenzofuran in Supercritical Methanol
XIE Jie1, 2, BAO Guirong1, 2, MENG Yiming1, 2, YANG Zhixiang1, 2, HE Tao1, 2
1 State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization,Kunming 650093;
2 Faculty of Metallurgy and Energy Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 1225KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以2,3-二氢苯并呋喃(DHBF)作为木质素单体模型物,采用密度泛函理论B3LYP/6-31G++(d,p)方法对其在超临界甲醇中加氢脱氧的机理进行了研究。研究中,利用SMD溶剂化模型,考虑了甲醇的溶剂效应。研究结果表明:在活性氢的作用下2,3-二氢苯并呋喃的杂环断裂相对容易,主要加氢产物为2-乙基苯酚。而2-乙基苯酚又可能会进一步发生醇解和加氢脱氧两条反应路径,通过能量对比发现苯环上剩余位置均有醇解的可能性,但以生成2-乙基-6-甲基苯酚最为容易;而加氢脱氧反应中加氢过程优于氢解过程,且脂肪环上的C-O键比苯环上的C-O键更易断裂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解婕
包桂蓉
孟一鸣
杨智翔
何涛
关键词:  2  3-二氢苯并呋喃 加氢脱氧 密度泛函理论 醇解    
Abstract: Dihydrobenzofuran (DHBF) was used as lignin monomer model, and the mechanism of hydrodeoxygenation in supercritical methanol has been studied by density functional theory B3LYP/6-31G ++ (d, p). Solvent effects were considered using a SMD solvation model for methanol. As the result shows, the dihydrobenzofuran heterocyclic was relatively easy to be fractured under the action of active hydrogen, and the main hydrogenation product was 2-ethylphenol. 2-ethylphenol may further undergo two reaction paths including alcoholysis and hydrodeoxygenation. Each remaining position on the benzene ring has the possibility to be alcoholysised, especially 2-ethyl-6-methyl phenol, which was the easiest to be produced by energy comparison. The hydrogenation process in the hydrodeoxygenation process was superior to the hydrogenolysis process, and the C-O bond attached to aliphatic ring was easier to be broken than the C-O bond attached to benzene ring.
Key words:  dihydrobenzofuran    hydrodeoxygenation    density functional theroy    alcoholysis
               出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TB3  
  TQ2  
基金资助: 国家自然科学基金(51266003)
通讯作者:  包桂蓉,女,1969年生,硕士研究生导师,研究方向为生物质能的转化与利用 E-mail:1633940830@qq.com   
作者简介:  解婕:女,1988年生,硕士研究生,研究方向为生物质超临界甲醇中催化液化 E-mail:xiejie2014702009@163.com
引用本文:    
解婕, 包桂蓉, 孟一鸣, 杨智翔, 何涛. 超临界甲醇中2,3-二氢苯并呋喃加氢脱氧的理论研究[J]. 材料导报, 2018, 32(6): 977-982.
XIE Jie, BAO Guirong, MENG Yiming, YANG Zhixiang, HE Tao. Theoretical Analysis on Hydrodeoxygenation Processes of Dihydrobenzofuran in Supercritical Methanol. Materials Reports, 2018, 32(6): 977-982.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.023  或          http://www.mater-rep.com/CN/Y2018/V32/I6/977
1 Tekin K, Karagöz S, Bektas S. A review of hydrothermal biomass processing[J].Renewable and Sustainable Energy Reviews,2014,40:673.
2 Li Ang, Liu Huili, Wang Hua, et al. Effects of temperature and heating rate on the characteristics of molded bio-chars[J].Bioresourses,2016,11(2):3259.
3 Song Qi, Cai Jiaying, Zhang Junjie, et al. Hydrogenation and clea-vage of the C-O bonds in the lignin model compound phenethyl phenyl ether over a nickel-based catalyst[J].Chinese Journal of Catalysis,2013,34(4):651.
4 Yu Yuxiao, Xu Ying, Wang Tiejun, et al. In-situ hydrogenation of lignin depolymerization model compounds to cyclohexanol[J].Journal of Fuel Chemistry and Technology,2013,41(4):443(in Chinese).
于玉肖,徐莹,王铁军,等.木质素降解模型化合物愈创木酚及苯酚原位加氢制备环己醇[J].燃料化学学报,2013,41(4):443.
5 Tan Xuesong, Zhuang Xinshu, Lv Shuangliang, et al. Hydrodeoxygenation of guaiacol as lignin model compound for alkanes preparation with palladium-carbon catalysts[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(21):193(in Chinese).
谭雪松,庄新姝,吕双亮,等.钯炭催化木质素模型化合物愈创木酚加氢脱氧制备烷烃[J].农业工程学报,2012,28(21):193.
6 Barta K, Matson T D, Fettig M L, et al. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J].Green Chemistry,2010,12(9):1640.
7 Liu C, Wilson A K. Cleavage of the β-O-4 linkage of lignin using group 8 pincer complexes: A DFT study[J].Journal of Molecular Catalysis A:Chemical,2015,399:33.
8 Minami E, Kawamoto H, Saka S. Reaction behavior of lignin in supercritical methanol as studied with lignin model compounds[J].Journal of Wood Science,2003,49(2):158.
9 Wildschut J, Mahfud F H, Venderbosch R H, et al. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts[J].Journal of Molecular Catalysis A:Chemical,2009,48(23):10324.
10 Zhao C, Kou Y, Lemonidou A A, et al. Highly selective catalytic conversion of phenolic bio-oil to alkanes[J].Angewandte Chemie,2009,48(22):3987.
11 Liu C, Shao Z, Xiao Z, et al. Hydrodeoxygenation of benzofuran over silica-alumina-supported Pt, Pd, and Pt-Pd catalysts[J].Energy Fuels,2012,26(7):4205.
12 Lin C, Li C, Wan H, et al. Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfide CoMo and NiMo catalysts[J].Energy Fuels,2011,25(3):890.
13 Li K, Wang R, Chen J. Hydrodeoxygenation of anisole over silica-supported Ni2P, MoP, and NiMoP catalysts[J].Energy Fuels,2011,25(3):854.
14 Wang Huajing, Zhao Yan, Wang Chen. Theoretical study on the pyrolysis process of lignin dimer modelcompounds[J].Acta Chimica Sinica,2009,67(9):893(in Chinese).
王华静,赵岩,王晨.木质素二聚体模型物裂解历程的理论研究[J].化学学报,2009,67(9):893.
15 Wu Shubin, Deng Yubin, Liu Chao. Theoretical analysis on pyrolysis processes of monomeric model compounds of lignin[J].Journal of South China University of Technology(Natural Science Edition),2014,42(10):70(in Chinese).
武书彬,邓裕斌,刘超.木质素单体模化物热解过程的理论分析[J].华南理工大学学报(自然科学版),2014,42(10):70.
16 Barta K, Matson T D, Fettig M L, et al. Catalytic disassembly of an organosolv lignin via hydrogen transfer from supercritical methanol[J].Green Chemistry,2010,12(9):1640.
17 Mei D H, Xu L J, Henkalman G. Potential energy surface of methanol decomposition on Cu(110)[J].Journal of Physical Chemistry C,2009,113(11):4522.
18 Greeley J, Mayrikakis M. Methanol decomposition on Cu(111): A DFT study[J].Journal of Catalysis,2002,208(2):291.
19 Macala G S, Maston T D, Johnaon C L, et al. Hydrogen transfer from supercritical methanol over a solid base catalyst:A model for lignin depolymerization[J].ChemSusChem,2009,2(3):215.
20 Wang H M, Male J, Wang Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds[J].ACS Catalysis,2013,3(5):1047.
21 Garcia-Pintos D, Voss J, Jensen A D, et al. Hydrodeoxygenation of phenol to benzene and cyclohexane on Rh(111) and Rh(211) surfaces: Insights from density functional theory[J].The Journal of Physical Chemistry,2016,120:18529.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 张甄, 王宝冬, 徐文强, 秦绍东, 孙琦. 黑色二氧化钛纳米材料研究进展[J]. 材料导报, 2019, 33(z1): 8-15.
[3] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[4] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[5] 郑贝贝, 邵玲. 国内Bi系高温超导材料制备工艺研究进展[J]. 材料导报, 2019, 33(z1): 318-320.
[6] 操芳芳, 马立云, 曹欣, 王魏巍, 仲召进, 李金威, 高强. SiO2/B2O3质量比对低介电封接玻璃性能的影响[J]. 材料导报, 2019, 33(z1): 199-201.
[7] 陈涛, 薛松柏, 孙子建, 翟培卓, 陈卫中, 郭佩佩. CO2气体保护焊短路过渡控制技术的研究现状与展望[J]. 材料导报, 2019, 33(9): 1431-1442.
[8] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[9] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[10] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[13] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[14] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[15] 王旭, 廖春发, 王瑞祥, 孙强超. 氟化物介质熔盐电解制备Ni-Yb合金及其表征[J]. 材料导报, 2019, 33(5): 750-753.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed