Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23090126-5    https://doi.org/10.11896/cldb.23090126
  金属与金属基复合材料 |
超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究
焦纪强1,2, 蒙峻2,3,*, 谢文君2, 刘建龙2,3, 魏宁斐2, 罗成2, 郭方准1,*, 王润成1
1 大连交通大学机械工程学院, 辽宁 大连 116000
2 中国科学院近代物理研究所, 兰州 730000
3 中国科学院大学核科学与技术学院, 北京 100049
Research on the Outgassing Performance of TC4 Titanium Alloy and ZrO2 Ceramics Under Ultra-high Vacuum
JIAO Jiqiang1,2, MENG Jun2,3,*, XIE Wenjun2, LIU Jianlong2,3, WEI Ningfei2, LUO Cheng2, GUO Fangzhun1,*, WANG Runcheng1
1 College of Mechanical Engineering, Dalian Jiaotong University, Dalian 116000, Liaoning, China
2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3 School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
下载:  全 文 ( PDF ) ( 4962KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 内衬超薄壁真空腔体是离子加速器真空系统的核心元件,为了获得超高真空环境,对内衬材料的出气性能有较高要求。基于新型双通道出气率实验装置,完成了TC4钛合金和ZrO2陶瓷在常温抽气、不同烘烤温度及烘烤结束后不同温度下的出气率实验;通过数值拟合方法获得了材料在不同加热温度下的出气率表达式;搭建了钛合金内衬超薄壁真空腔体压力实验装置,通过实验和仿真对比分析了不同工况下的压力分布。结果表明,烘烤温度越高,最终出气率越低,250 ℃烘烤时出气率较150 ℃时降低了约21%。经过高温烘烤后,当材料温度从50 ℃升高至210 ℃时,两种材料的出气率呈指数增加趋势,但钛合金的出气率低于陶瓷的出气率。常温抽气和烘烤过程中真空腔体压力梯度较小,对其进行升温时中间位置压力变化幅度较大,当温度为100 ℃,中间位置压力从初始值1.41×10-9 Pa升高至4.51×10-9 Pa;压力仿真结果和实验结果一致,平均相对偏差为6.86%。以上结果填补了钛合金和陶瓷出气率数据库,能够预测及评估真空腔体不同工况下的极限压力,为超高、极高真空获取提供数据支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
焦纪强
蒙峻
谢文君
刘建龙
魏宁斐
罗成
郭方准
王润成
关键词:  离子加速器  超高真空  TC4钛合金  ZrO2陶瓷  出气率  压力分布    
Abstract: The inner lined thin-walled vacuum chamber is the core of ion accelerator vacuum system. In order to obtain ultra-high vacuum, there is a high requirement for the outgassing performance of the inner material. Based on a new dual channel outgassing rate test system, the outgassing rate of TC4 titanium alloy and ZrO2 ceramics were completed at room temperature pumping, different baking temperatures and different heating temperatures after baking. The mathematical expressions of outgassing rate at different temperatures were obtained by fitting method. The pressure test system of titanium alloy lined chamber was developed, and the pressure distribution under different conditions was obtained by experiment and simulation. The result showed that the higher baking temperature, the lower ultimate outgassing rate. Compared to the baking temperature of 150 ℃, the outgassing rates of alloy and ceramics decreased by 21% at the baking temperature of 250 ℃. After baking, at the temperature between 50 ℃ and 210 ℃, the outgassing rate of the two materials showed an exponentially increasing trend, but the outgassing rate of titanium alloy was lower than that of ceramics. Besides, the chamber pressure gradient was relatively smooth in the process of room temperature and baking, but the pressure at the middle position changed greatly under different heating temperatures. When the temperature increased from room temperature to 100 ℃, the middle position pressure increased from 1.41×10-9 Pa to 4.51×10-9 Pa. The simulation results were consistent with the experimental results, and the average relative deviation was 6.86%. The above results should fill the outgassing rate database of titanium alloy and ceramics, which could be helpful to predict and evaluate the ultimate pressure of the inner lined thin-walled vacuum chamber under different working conditions, and provide support for ultra-high vacuum and extremely high vacuum acquisitions.
Key words:  ion accelerator    ultra-high vacuum    TC4 titanium alloy    ZrO2 ceramic    outgassing rate    pressure distribution
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TB31  
  TB741  
基金资助: 国家重点研发项目(Y91O310201);兰州重离子加速器运行维护(Y9HIRLL100)
通讯作者:  *蒙峻,中国科学院近代物理研究所正高级工程师、博士研究生导师。长期从事真空技术、材料镀膜技术、极高真空获得技术等研究工作。mengjun@impcas.ac.cn;郭方准,大连交通大学教授、博士研究生导师。长期从事凝聚态物理和先进装备制造领域等研究工作。guofz@hotmail.co.jp   
作者简介:  焦纪强,大连交通大学博士研究生,研究方向为超高/极高真空环境下真空材料性能、极高真空获得技术等相关研究。
引用本文:    
焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
JIAO Jiqiang, MENG Jun, XIE Wenjun, LIU Jianlong, WEI Ningfei, LUO Cheng, GUO Fangzhun, WANG Runcheng. Research on the Outgassing Performance of TC4 Titanium Alloy and ZrO2 Ceramics Under Ultra-high Vacuum. Materials Reports, 2025, 39(1): 23090126-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23090126  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23090126
1 Tang J Y, Zhou L P. Atomic Energy Science and Technology, 2022, 56(9), 1735 (in Chinese).
唐靖宇, 周路平. 原子能科学技术, 2022, 56(9), 1735.
2 Meng J, Luo C, Chai Z, et al. Vacuum, 2015, 114, 108.
3 Yang J C, Xia J W, Xiao G Q, et al. Nuclear Instruments and Methods in Physics Research Section B, 2013, 317, 263.
4 Luo C, Li P, Xie W J, et al. Vacuum, 2018, 157, 159.
5 Li C C, Luo C, Liu J L, et al. Vacuum, 2021, 184, 109898.
6 Chen X Q, Yang J C, Xia J W, et al. Nuclear Instruments and Methods in Physics Research, 2019, A920, 37.
7 蒙峻,罗成, 杨建成, 等. 中国专利, CN116133225B, 2023.
8 Luo C, Yang W S, Xie W J, et al. Atomic Energy Science and Technology, 2020, 54(11), 2245 (in Chinese).
罗成, 杨伟顺, 谢文君, 等. 原子能科学技术, 2020, 54(11), 2245.
9 Ishikawa Y, Nemani V. Vacuum, 2003, 69(4), 501.
10 Guo D Z, Zhang J H, Meng J, et al. Chinese Journal of Vacuum Science and Technology, 2011, 31(3), 4 (in Chinese).
郭迪舟, 张军辉, 蒙峻, 等. 真空科学与技术学报, 2011, 31(3), 4.
11 Zhang Y F. Research and experiment on TiN thin film plating system for accelerator stainless steel pipeline vacuum chamber. Ph. D. Thesis, University of Science and Technology of China, China, 2008 (in Chinese).
张耀锋. 加速器不锈钢管道真空室镀TiN薄膜系统的研究及实验. 博士学位论文, 中国科学技术大学, 2008.
12 Chen X, Zhang D S, Qi J, et al. Vacuum, 2003(5), 4 (in Chinese).
陈旭, 张德胜, 齐京, 等. 真空, 2003(5), 4.
13 刘建龙, 李长春, 马向利, 等. 中国专利, CN202011389010, 2021.
14 Wang Y, Zhang Y F, Wei W. Vacuum, 2007, 44(4), 3 (in Chinese).
王勇, 张耀锋, 尉伟. 真空, 2007, 44(4), 3.
15 Da D A, Xiao X Z, Liu Y K, et al. Vacuum design manual, National Defense Science and Technology Press, China, 2006 ( in Chinese).
达道安, 肖祥正, 刘玉魁, 等. 真空设计手册, 国防科技出版社, 2006, pp. 103.
16 Zhang M Z, Li H H, Li D M. High Power Laser Part:Beams, 2011, 23 (5), 1357.
17 Xu S Y, Wang S. Chinese Physics C, 2012, 36 (2), 160.
[1] 焦纪强, 蒙峻, 罗成, 柴振, 谢文君. Xe23+离子束轰击低温工况下的无氧铜表面解吸性能研究[J]. 材料导报, 2024, 38(1): 22040201-5.
[2] 方静, 祁文军, 胡国玉. 8 mm中厚板TC4钛合金TIG焊数值模拟及实验研究[J]. 材料导报, 2023, 37(22): 22030018-6.
[3] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[4] 方乃文, 黄瑞生, 武鹏博, 尹立孟, 龙伟民, 徐锴, 曹浩, 邹吉鹏. 钛合金窄间隙激光填丝焊接工艺及接头组织性能分析[J]. 材料导报, 2023, 37(10): 22010253-1.
[5] 徐楷昕, 雷振, 黄瑞生, 尹立孟, 方乃文, 邹吉鹏, 曹浩. 40 mm厚TC4钛合金窄间隙激光填丝焊接头组织及性能[J]. 材料导报, 2022, 36(2): 20120180-6.
[6] 易宗鑫, 李小强, 潘存良, 沈正章. TC4钛合金筒形收口件超塑胀形数值模拟及试验研究[J]. 材料导报, 2022, 36(18): 21040245-8.
[7] 王伟, 王萌, 蔡军, 张浩泽, 史亚鸣, 张晓锋, 黄海广, 王快社. EB炉熔炼TC4钛合金轧制过程中的组织演变与力学性能[J]. 材料导报, 2021, 35(8): 8140-8145.
[8] 易宗鑫, 李小强, 潘存良, 沈正章. 等轴细晶TC4钛合金应变补偿本构关系及热加工图的研究[J]. 材料导报, 2021, 35(18): 18146-18152.
[9] 刘洁, 艾桃桃, 李文虎, 寇领江, 包维维, 董洪峰, 李梅. 通孔构型Ti6Al4V/Ti2AlC-TiAl基叠层复合板材的组织和性能[J]. 材料导报, 2021, 35(16): 16081-16085.
[10] 许爱平, 侯继军, 董俊慧. 稀土活性剂对TC4钛合金激光焊焊接接头的影响[J]. 材料导报, 2020, 34(Z2): 348-350.
[11] 任超, 罗军明, 陈宇海, 黄俊, 徐吉林. 喷丸对TC4合金微弧氧化涂层磨损和腐蚀行为的影响[J]. 材料导报, 2020, 34(18): 18081-18085.
[12] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. TC4合金激光熔覆材料的研究现状[J]. 材料导报, 2020, 34(15): 15132-15137.
[13] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[14] 武靖伟, 张忠科, 车朋卫. 钎料Zn对钛/铝搅拌摩擦钎焊接头组织和性能的影响[J]. 材料导报, 2019, 33(18): 3067-3071.
[15] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed