Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 23090098-17    https://doi.org/10.11896/cldb.23090098
  金属与金属基复合材料 |
新型液态金属电池材料体系及其相关技术的研究与进展
井文昌1, 张志鸿1, 刘香琛1, 吴云翼2, 李宝让1,*
1 华北电力大学能源动力与机械工程学院, 北京 102206
2 中国长江三峡集团有限公司科学技术研究院综合能源技术研究中心, 北京 100038
Research and Progress on Material Systems and Related Technologies of Liquid Metal Battery
JING Wenchang1, ZHANG Zhihong1, LIU Xiangchen1, WU Yunyi2, LI Baorang1,*
1 School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
2 Research Center for Comprehensive Energy Technology, CTG Science and Technology Research Institute, Beijing 100038, China
下载:  全 文 ( PDF ) ( 45303KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为一种新型储能技术,液态金属电池以独特的结构赋予了自身低成本、高倍率、长寿命、易于制造和放大等特性,被认为是固定式储能极有前途的解决方案之一。自2006年Sadoway教授提出液态金属电池概念以来,不同的电池材料体系得到广泛的研究。本文在详细介绍液态金属电池工作原理和电池材料选择标准后,按照工作温度分级介绍了高温液态金属电池(>300 ℃)、中温液态金属电池(100~300 ℃)以及室温液态金属电池(<40 ℃)的材料体系。并在此基础上按不同温区系统综述了液态金属电池近年来研究进展,而后讨论了液态电池封装技术的抗腐蚀问题,最后指出了未来液态金属电池可能的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
井文昌
张志鸿
刘香琛
吴云翼
李宝让
关键词:  液态金属电池  电化学储能  电极材料  熔盐电解质  腐蚀与封装    
Abstract: As a new type of energy storage technology, liquid metal batteries, with unique structures, are considered to be one of the most promising solutions for large scale fixed energy storage due to their advantages such as low cost, high magnification, long lifespan and ease of manufacturing and amplification. Since proposed by professor Donald Sadoway in 2006, liquid metal batteries based on various types of material systems have been extensively studied. In this summary, after a detailed introduction of the working principle and material selection criteria of liquid metal batteries, materials recommendation system on high-temperature liquid metal batteries (>300 ℃), medium temperature liquid metal batteries (100—300 ℃), and room temperature liquid metal batteries (<40 ℃) were discussed. Meanwhile, depending on the open-published literature, a systematic review was conducted on the present research situation in liquid metal batteries including packaging technology in recent years. Finally proposed some possible research directions on liquid metal batteries in the future.
Key words:  liquid metal battery    electrochemical energy storage    electrode material    molten salt electrolyte    corrosion and packaging
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TM91  
基金资助: 中国长江三峡集团有限公司科研项目(202203204)
通讯作者:  *李宝让,华北电力大学能源动力与机械工程学院教授、博士研究生导师。目前主要从事液态金属电池、腐蚀、相变储能等方面的工作。libr@ncepu.edu.cn   
作者简介:  井文昌,现为华北电力大学材料科学与工程系硕士研究生,在李宝让教授的指导下进行研究。目前主要研究的领域为室温液态金属电池。
引用本文:    
井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
JING Wenchang, ZHANG Zhihong, LIU Xiangchen, WU Yunyi, LI Baorang. Research and Progress on Material Systems and Related Technologies of Liquid Metal Battery. Materials Reports, 2025, 39(1): 23090098-17.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23090098  或          https://www.mater-rep.com/CN/Y2025/V39/I1/23090098
1 Sheng H, Zhou Q Y, Liu Y, et al. Power Generation Technology, 2021, 42(1), 8 (in chinese).
申洪, 周勤勇, 刘耀, 等. 发电技术, 2021, 42(1), 8.
2 Li H M, Wang K L, Cheng S J, et al. ACS Applielectrd Materials & Interfaces, 2016, 8(20), 12830.
3 Cairns E J, Crouthamel C E, Fischer A K, et al. Galvanic cells with fused-salt electrolyte, Argonne National Lab, USA, 1967, pp. 85.
4 Kim H, Boysen D A, Newhouse J M, et al. Chemical Reviews, 2013, 113(3), 2075.
5 Li Z H, Zhu F F, Li H M, et al. Energy Storage Science and Technology, 2017, 6(5), 981 (in Chinese).
黎朝晖, 朱方方, 李浩秒, 等. 储能科学与技术, 2017, 6(5), 981.
6 Xie H L, Chen Z Y, Chu P, et al. Journal of Power Sources, 2022, 536, 231527.
7 Dai T, Zhao Y, Ning X H, et al. Journal of Power Sources, 2018, 381, 38.
8 Cui K X, Zhao W, Li S W, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(5), 1871.
9 Wang K L, Jiang K, Chung B, et al. Nature, 2014, 514(7522), 348.
10 Kim J, Shin D, Jung Y, et al. Journal of Power Sources, 2018, 377, 87.
11 Yu H, Lu H M, Hu X Q, et al. Materials Chemistry and Physics, 2020, 247, 122865.
12 Spatocoo B L, Ouchi T, Lambotte G, et al. Journal of the Electrochemical Society, 2015, 162(14), A2729.
13 Ashour R F, Yin H, Ouchi T, et al. Journal of the Electrochemical Society, 2017, 164(2), A535.
14 Zhou H, Li H M, Gong Q, et al. Energy Storage Materials, 2022, 50, 572.
15 Xu J L, Kjos O S, Osen K S, et al. Journal of Power Sources, 2016, 332, 274.
16 Holubowitch N E, Manek S E, Landon J, et al. Advanced Materials Technologies, 2016, 1(3), 1600035.
17 Zhao W, Li P, Han K, et al. Journal of Power Sources, 2020, 463, 228233.
18 Bradwell D J, Kim H, Sirk A H C, et al. Journal of the American Che-mical Society, 2012, 134(4), 1895.
19 Kim H, Boysen D A, Ouchi T, et al. Journal of Power Sources, 2013, 241, 239.
20 Ouchi T, Kim H, Spatocco B L, et al. Nature Communications, 2016, 7(1), 10999.
21 Yan S, Zhou X B, Li H M, et al. Journal of Power Sources, 2021, 514, 230578.
22 Zhou X B, Zhou H, Yan S, et al. Journal of Power Sources, 2022, 534, 231428.
23 Xie H L, Chu P, Yang M A, et al. Energy Storage Materials, 2023, 54, 20.
24 Zhao W, Li P, Liu Z W, et al. Chemistry of Materials, 2018, 30(24), 8739.
25 Cui K X, Li P, Zhao W, et al. Materials Letters, 2023, 338, 134067.
26 Zhou Y, Li G Q, Li B X, et al. Energy Storage Materials, 2022, 53, 927.
27 Zhou H, Li B X, Yu M, et al. Energy Storage Materials, 2023, 56, 205.
28 Ning X H, Phadke S, Chung B, et al. Journal of Power Sources, 2015, 275, 370.
29 Zhou X B, Yan S, He X, et al. Energy Storage Materials, 2023, 61, 102889.
30 Zhou Y, Ning X H. Small, 2023, 20(3), 2304528.
31 Yeo J S, Lee J, Yoo E J, et al. ECS Meeting Abstracts, 2018, 1(2), 204.
32 Xie H L, Zhao H L, Wang J, et al. Journal of Power Sources, 2020, 472, 228634.
33 Li H M, Wang K L, Zhou H, et al. Energy Storage Materials, 2018, 14, 267.
34 Yeo J S, Lee J H, Yoo E J. Electrochimica Acta, 2018, 290, 228.
35 Ouchi T, Kim H, Ning X, et al. Journal of the Electrochemical Society, 2014, 161(12), A1898.
36 Ning X H, Liao C Z, Li G Q. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12), 1723.
37 Fetzer R, Zhang T R, Lindner F, et al. Journal of Power Sources, 2024, 591, 233823.
38 Gong Q, Ding W J, Bonk A, et al. Journal of Power Sources, 2020, 475, 228674.
39 Holubowitch N, Manek S, Landon J, et al. ECS Transactions, 2014, 64(4), 439.
40 Holubowitch N E, Manek S E, Landon J, et al. International Journal of Energy Research, 2016, 40(3), 393.
41 Kim H, Boysen D A, Bradwell D J, et al. Electrochimica Acta, 2012, 60, 154.
42 Poizeau S, Kim H, Newhouse J M, et al. Electrochimica Acta, 2012, 76, 8.
43 Newhouse J M, Poizeau S, Kim H, et al. Electrochimica Acta, 2013, 91, 293.
44 Lu X C, Kirby B W, Xu W, et al. Energy & Environmental Science, 2013, 6(1), 299.
45 Kummer J T, Weber N. SAE Transactions, SAE International, 1968, 76, 1003.
46 Wang D, Hwang J, Chen C Y, et al. Advanced Functional Materials, 2021, 31(48), 2105524.
47 Sudworth J L. Journal of Power Sources, 2001, 100(1), 149.
48 Lu X C, Li G S, Kim J Y, et al. Journal of Power Sources, 2012, 215, 288.
49 Li G, Lu X, Kim J Y, et al. Journal of Power Sources, 2014, 272, 398.
50 Ao X, Wen Z Y, Hu Y Y, et al. Journal of Power Sources, 2017, 340, 411.
51 Li Y P, Shi L, Gao X P, et al. Chemical Engineering Journal, 2021, 421, 127853.
52 Li G S, Lu X C, Kim J Y, et al. Advanced Energy Materials, 2015, 5(12), 1500357.
53 Jin Y, Liu K, Lang J L, et al. Nature Energy, 2018, 3(9), 732.
54 Jin Y, Liu K, Lang J L, et al. Joule, 2020, 4(1), 262.
55 Azza H, Selhaoui N, Iddaoudi A, et al. Journal of Phase Equilibria and Diffusion, 2017, 38(5), 788.
56 Deshpande R D, Li J C, Cheng Y T, et al. Journal of the Electrochemical Society, 2011, 158(8), A845.
57 Guo X L, Ding Y, Yu G H. Advanced Materials, 2021, 33(29), 2100052.
58 Liang W T, Hong L, Yang H, et al. Nano Letters, 2013, 13(11), 5212.
59 Guo X L, Zhang L Y, Ding Y, et al. Energy & Environmental Science, 2019, 12(9), 2605.
60 Wei C L, Tan L W, Zhang Y C, et al. Energy Storage Materials, 2022, 50, 473.
61 Guo X L, Ding Y, Xue L G, et al. Advanced Functional Materials, 2018, 28(46), 1804649.
62 Wu Y P, Huang L, Huang X K, et al. Energy & Environmental Science, 2017, 10(8), 1854.
63 Zhu J H, Wu Y P, Huang X K, et al. Nano Energy, 2019, 62, 883.
64 Wang K Z, Hu J, Chen T Y, et al. Energy Technology, 2021, 9(9), 2100330.
65 Huang Y, Wang H J, Jiang Y B, et al. Materials Letters, 2020, 276, 128261.
66 Kidanu W G, Hur J, Kim I T. Materials, 2021, 15(1), 168.
67 Ding Y, Guo X L, Qian Y M, et al. Advanced Materials, 2020, 32(30), 2002577.
68 Xue L G, Gao H C, Zhou W D, et al. Advanced Materials, 2016, 28(43), 9608.
69 Xue L G, Zhou W D, Xin S, et al. Angewandte Chemie International Edition, 2018, 57(43), 14184.
70 Zhang L Y, Peng S S, Ding Y, et al. Energy & Environmental Science, 2019, 12(6), 1989.
71 Ding Y, Guo X L, Qian Y M, et al. Advanced Materials, 2019, 31(11), 1806956.
72 Si W, Xiao Z, Wang R Z, et al. Energy Storage Materials, 2023, 57, 205.
73 Xue L G, Gao H C, Li Y T, et al. Journal of the American Chemical Society, 2018, 140(9), 3292.
74 Li Z H, Zhou H, Li H M, et al. Power Generation Technology, 2022, 43(5), 760 (in Chinese).
李泽航, 周浩, 李浩秒, 等. 发电技术, 2022, 43(5), 760.
75 Li H M. Study on energy storage materials and technologies based on molten salt electrochemistry. Ph. D. Thesis, Huazhong University of Science & Technology, China, 2016 (in Chinese).
李浩秒. 基于熔盐电化学的新型储能材料与技术研究. 博士学位论文, 华中科技大学, 2016.
76 Li B R, Wen B, Chen H Z, et al. Corrosion Science, 2021, 178, 109058.
77 Zhang J, Huang J, Liu R X, et al. Corrosion Science, 2021, 190, 109672.
78 He J C. Multiscale study on aluminum/alumina functionally graded material with mesoscopic pores. Master's Thesis, Wuhan University of Technology, China, 2020 (in Chinese).
何济沧. 含细观孔隙铝/氧化铝功能梯度材料多尺度研究. 硕士学位论文, 武汉理工大学, 2020.
79 Chu P, Zhao H L, Wang J, et al. Journal of Alloys and Compounds, 2022, 903, 163952.
80 Ouchi T, Sadoway D R. Journal of Power Sources, 2017, 357, 158.
81 Cui K X, An F Q, Zhao W, et al. The Journal of Physical Chemistry C, 2021, 125(1), 237.
82 Cui K X, Li P, Zhao W, et al. Journal of Power Sources, 2022, 538, 231584.
83 Cui K X, Zhao W, Zhou D M, et al. ACS Applied Energy Materials, 2021, 4(9), 9013.
[1] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[2] 师楷雁, 白杰, 孙炜岩. 碳基电极材料的改性方法与应用进展[J]. 材料导报, 2024, 38(22): 23080167-9.
[3] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[4] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[5] 白小杰, 宋生南, 卓祖优, 刘海雄, 陈燕丹. 丝瓜络基3D多级孔结构掺氮活性炭的制备及储能特性[J]. 材料导报, 2023, 37(5): 21080011-7.
[6] 尹青, 杨姝涵, 宋挚豪, 赵泽羽, 李泳志, 赵丹阳, 戚继球, 隋艳伟. 米粒型氯插层NiFe层状双金属氢氧化物作为新概念氯离子电池正极材料[J]. 材料导报, 2023, 37(21): 23070158-8.
[7] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[8] 孟兆通, 张昌海, 迟庆国, 张天栋. 固体绝缘材料中空间电荷的主要影响因素及抑制方法[J]. 材料导报, 2023, 37(1): 21040316-9.
[9] 赵磊, 彭元佑, 李媛, 张倩倩, 冉奋. 聚乙二醇分子刷接枝改性碳微球及其电化学性能[J]. 材料导报, 2022, 36(21): 21080112-7.
[10] 牛晓勤, 康小雅, 马应霞, 王嘉伟, 陈新权, 田虎, 陈玉红, 冉奋. 新型球状Ni/Co-MOFs电极材料的构筑及电化学性能研究[J]. 材料导报, 2022, 36(14): 21050021-7.
[11] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[12] 王心桥, 张健, 苏彤, 赵兴, 郭永权. 先进液态金属电池熔盐电解质的设计[J]. 材料导报, 2022, 36(1): 20090223-7.
[13] 高君华, 黄浩, 曾冲, 郑瑞伦. 孔隙率对传感器多孔电极材料导电性能的影响[J]. 材料导报, 2021, 35(18): 18018-18023.
[14] 孙丹, 李伟, 刘峥. 二维纳米材料MXene及其在锂离子电池中的应用研究进展[J]. 材料导报, 2021, 35(15): 15047-15055.
[15] 胡丙升, 王宏, 宋俊超, 魏亮, 岳世松, 贾金鑫, 史长亮, 杨蕾. 煤系高岭土中残留炭的分离回收与材料化利用研究[J]. 材料导报, 2020, 34(24): 24068-24073.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed