Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 23070158-8    https://doi.org/10.11896/cldb.23070158
  无机非金属及其复合材料 |
米粒型氯插层NiFe层状双金属氢氧化物作为新概念氯离子电池正极材料
尹青*, 杨姝涵, 宋挚豪, 赵泽羽, 李泳志, 赵丹阳, 戚继球, 隋艳伟*
中国矿业大学材料与物理学院,江苏 徐州 221116
Chloride Inserted Grain-like NiFe Layered Double Hydroxide Cathode for the New Concept of Chloride Ion Battery
YIN Qing*, YANG Shuhan, SONG Zhihao, ZHAO Zeyu, LI Yongzhi, ZHAO Danyang, QI Jiqiu, SUI Yanwei*
School of Materials and Physics, China Universiy of Mining and Technology, Xuzhou 221116, Jiangsu, China
下载:  全 文 ( PDF ) ( 18995KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以卤素氯离子为载荷离子的新概念氯离子电池(CIBs)被认为是“下一代”大规模、高安全电化学储能设备的有力竞争者。层状双金属氢氧化物(LDHs)因具有高的储氯容量与稳定的层状拓扑结构,被视为一类极具发展前景的CIBs正极材料。本工作以MOFs材料MIL-88A为模板前驱体,采用先水解后离子交换的两步法,制备了具有米粒形貌的氯离子插层NiFe LDH纳米多面体(g-NiFe-Cl LDH),其具有高于常规NiFe LDH纳米片两倍的比表面积。这种纳米多面体g-NiFe-Cl LDH材料能够克服一般LDHs纳米片层板间易堆积的本征缺陷,增大材料电化学活性位点暴露率,提高其与电解液的有效接触面积,促进氯离子扩散动力学,最终实现其储氯性能的强化。将g-NiFe-Cl LDH作为CIB正极材料时,电池表现出286.1 mAh/g的最大放电比容量,且在经过200次充放电循环后仍可保持155.3 mAh/g的稳定放电比容量,为常规NiFe-Cl LDH纳米片的两倍。同时,g-NiFe-Cl LDH基CIB的储能机理也被揭示:充电过程中,g-NiFe-Cl LDH正极中的氯离子从层间脱出,其主体层板中的双金属Ni3+/Fe3+被还原成Ni2+/Fe2+。考虑到LDHs材料简单的制备过程和高度可调的化学组分,本工作为设计具有高容量输出和长循环寿命的CIBs正极材料提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹青
杨姝涵
宋挚豪
赵泽羽
李泳志
赵丹阳
戚继球
隋艳伟
关键词:  氯离子电池  层状双金属氢氧化物(LDHs)  金属有机框架(MOF)  阴离子电化学储能  可逆氯离子嵌入/脱出机制    
Abstract: The new type of anion shuttle battery representing by thechloride-ion battery (CIB), is considered to be one of the competitor for the ‘next generation' large-scale electrochemical energy storage system, owing to their significant safety advantages and low cost. However, it is still a great challenge to exploit high performance cathode materials for the practical application of CIBs. Layered double hydroxides (LDHs) have been considered as highly potential cathodes for CIBs because of their tunable interlayer spacing and unique topological transformation characte-ristic. Herein, the chloride inserted grain-like NiFe LDH (g-NiFe-Cl LDH) with large specific surface area is prepared using the MIL-88A as precursor through the hydrolysis process followed by anion exchange methode. The g-NiFe-Cl LDH could not only overcome the inherent defects of laminated stack by LDHs nanosheets, but also increase the exposure rate of electrochemical active sites, which accordingly improves the effective contact between electrode and electrolyte and promotes the chloride ion diffusion kinetics. The g-NiFe-Cl LDH is then used as cathode for CIB, which delivers a maximum discharge specific capacity of 286.1 mAh/g and a stable capacity of 155.3 mAh/g over 200 cycles. The Cl-storage mechanism of g-NiFe-Cl LDH cathode is also revealed that the reversible intercalation/deintercalation of chloride ions in LDH gallery along with the oxidation state changes in Ni2+/Ni3+ and Fe2+/Fe3+ oxidation couples. This work proviedes some new insights for the design and performance enhancement for the new LDHs-based anionic energy storage system.
Key words:  chloride ion batteries (CIBs)    layered double hydroxides (LDHs)    metal-organic framework (MOF)    anionic energy storage system    chloride ions intercalation/de-intercalation mechanism
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  O646  
基金资助: 中央高校基本科研业务费专项资金(2022QN1090)
通讯作者:  *尹青,2021年于北京化工大学化工资源有效利用国家重点实验室获得工学博士学位,同年加入中国矿业大学材料与物理学院。主要围绕无机二维层状材料的结构调控及电化学储能特性强化开展研究工作。以第一/通信作者在Adv. Funct. Mater.Chem. Sci.Chem. Eng. J.Materials Horizons等国际知名学术期刊发表SCI论文。tbh251@cumt.edu.cn 隋艳伟,教授、博士研究生导师。2009年于哈尔滨工业大学获得博士学位,同年进入中国矿业大学工作,并且于2017年在奥克兰大学访学。主要从事高效储能材料与器件研究工作。发表SCI文章近200篇,获授权发明专利50余项,主编专著2部。suiyanwei@cumt.edu.cn   
引用本文:    
尹青, 杨姝涵, 宋挚豪, 赵泽羽, 李泳志, 赵丹阳, 戚继球, 隋艳伟. 米粒型氯插层NiFe层状双金属氢氧化物作为新概念氯离子电池正极材料[J]. 材料导报, 2023, 37(21): 23070158-8.
YIN Qing, YANG Shuhan, SONG Zhihao, ZHAO Zeyu, LI Yongzhi, ZHAO Danyang, QI Jiqiu, SUI Yanwei. Chloride Inserted Grain-like NiFe Layered Double Hydroxide Cathode for the New Concept of Chloride Ion Battery. Materials Reports, 2023, 37(21): 23070158-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070158  或          http://www.mater-rep.com/CN/Y2023/V37/I21/23070158
1 Anji R M, Fichtner M. Journal of Materials Chemistry, 2011, 21, 17059.
2 Davis V K, Bates C M, Omichi K, et al. Science, 2018, 362, 1144.
3 Yang C, Chen J, Wang C, et al. Nature, 2019, 569, 245.
4 Karkera G, Reddy M A, Fichtner M. Journal of Power Sources, 2021, 448, 228877.
5 Liu Q, Wang Y, Wang G, et al. Chemistry, 2021, 7, 109.
6 Zhao X, Shen X. Materials China, 2015, 34(11), 847(in Chinese).
赵相玉, 沈晓冬. 中国材料进展, 2015, 34(11), 847.
7 Gao P, Reddy M A, Fichtner M, et al. Angewandte Chemie International Edition, 2016, 55, 4285.
8 Zhao X, Zhao-Karger Z, Fichtner M, et al. Angewandte Chemie International Edition, 2013, 52, 13621.
9 Zhao X, Zhao Z, Shen X, et al. ACS Applied Materials & Interfaces, 2017, 9, 2535.
10 Yang R, Yu T, Zhao X. Journal of Alloys and Compounds, 2019, 788, 407.
11 Yu J, Wang Q, O'Hare D, et al. Chemical Society Reviews, 2017, 46, 5950.
12 Ma R, Liu Z, Sasaki T, et al. Journal of the American Chemical Society, 2007, 129, 5257.
13 Ma R, Iyi N, Sasaki T, et al. Angewandte Chemie International Edition, 2008, 47, 86.
14 Furukawa Y, Tadanaga K, Tatsumisago M, et al. Solid State Ionics, 2011, 192, 185.
15 Yin Q, Han J, Wei M, et al. Advanced Functional Materials, 2019, 29, 1900983.
16 Yin Q, Zhang J, Han J, et al. Chemical Engineering Journal, 2020, 389, 124376.
17 Wang G, Li Y, Hou L, et al. Angewandte Chemie International Edition, 2022, 61, e202205427.
18 Li Y, Wang G, Zhu Z, et al. ACS Applied Materials & Interfaces, 2021, 13, 4102.
19 Yin Q, Li Y, Sui Y, et al. Chemical Science, 2023, 14, 5643.
20 Song Z, Meng Q, Qi J, et al. Journal of Electroanalytical Chemistry, 2023, 936, 117379.
21 Ye Z, Jiang Y, Chen R, et al. Nano-Micro Letters, 2021, 13, 203.
22 Qian X, Chen W, Guan G, et al. Electrochimica Acta, 2023, 437, 141524.
23 Yin Q, Luo J, Han J, et al. Advanced Functional Materials, 2020, 30, 1907448.
24 Zhang S, Zhang J, Han J, et al. ACS Applied Materials & Interfaces, 2022, 14, 24518.
25 Zhao Y, Sun T, Wei M, et al. Journal of Materials Chemistry A, 2019, 7, 15371.
26 Bu R, Liu L, Chen R, et al. Shandong chemical industry, 2022, 51(17), 1(in Chinese).
卜冉冉, 刘璐, 陈瑞欣, 等, 山东化工, 2022, 51(17), 1.
27 Wang L, Guan S, Zhou S, et al. ACS Applied Materials & Interfaces, 2019, 11, 6267.
28 Fan G, Li F, Duan X, et al. Chemical Society Reviews, 2014, 43, 7040.
29 Liu X, Wang C, Han J, et al. Journal of Materials Chemistry A, 2014, 2, 1682.
30 Song X, Qi J, Yin Q, et al. Small, 2023, DOI:10. 1002/smll. 202302896.
31 Yang S, Sui Y, Yin Q, et al. Materials Horizons, DOI: 10. 1039/D3MH00706E.
32 Xu M, Wei M. Advanced Functional Materials, 2018, 28, 1802943.
33 Yu Lu, Shao Lianyi, Wang Shige, et al. Materials Today Physics, 2022, 22, 100593.
34 Xie L, Xiao W H, Shi X Y, et al. Chemical Communication, 2022, 58, 13807.
35 Guan Jieduo, Huang Qiaofeng, Shao Lianyi, et al. Small, 2023, 19, 2207148.
36 Simon P, Gogotsi Y, Dunn B. Science, 2014, 343, 1210.
37 Zhao X, Ren S, Michael B, et al. Journal of Power Sources 2014, 245, 706.
38 Lakshmi K, Janas K, Shaijumon M. Journal of Power Sources, 2019, 433, 126685.
39 Wang J, Polleux J, Dunn B, et al. Journal of Physical Chemistry C, 2017, 111, 14925.
[1] 郑德勇, 晋慧慧, 姬鹏霞. Co3S4电极材料的制备及在碱性析氢反应中的重构行为研究[J]. 材料导报, 2023, 37(18): 22040230-4.
[2] 刘继成, 杨仁凯, 陈贵生, 孙思, 韩晓宇, 田洁, 李晓林. 改性PbO2电极电化学催化裂解的稳定性研究[J]. 材料导报, 2023, 37(8): 21080035-6.
[3] 江志威, 刘呈坤, 吴红, 毛雪. 静电纺柔性超级电容器电极材料的研究进展[J]. 材料导报, 2023, 37(5): 21040283-13.
[4] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[5] 赵宏顺, 戚燕俐, 任玉荣. 钠离子电池负极材料锐钛矿型二氧化钛的研究进展[J]. 材料导报, 2023, 37(3): 21030187-10.
[6] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[7] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[8] 曹鹏飞, 刘雅婷, 陈妮, 汤文静, 李福枝, 夏勇, 孙翱魁. 水系锌离子电池正极材料的研究进展[J]. 材料导报, 2022, 36(23): 21010239-13.
[9] 王雅君, 白秋红, 伍根成, 王正, 李聪, 申烨华. 纳米纤维素基复合材料及其用于柔性储能器件的研究进展[J]. 材料导报, 2022, 36(23): 21010198-7.
[10] 刘利, 诸力维, 彭喜林, 周洋, 张楷彬, 孙浩荻, 李晓林. 污水中非正磷酸盐处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22050093-5.
[11] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[12] 赵文文, 王韵芳, 段东红, 刘世斌, 周娴娴, 陈良. 金属有机骨架衍生的层状Co3O4/C在锂硫电池中的应用[J]. 材料导报, 2022, 36(6): 20120257-7.
[13] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[14] 唐琴, 周大利, 陈先勇. 清江河虾头胸甲基富氮/氧分级多孔叠炭片的制备及电化学性能[J]. 材料导报, 2021, 35(22): 22016-22021.
[15] 夏广辉, 王丁, 李雪豹, 董鹏, 张英杰, 王皓逸. 钠离子电池金属硫化物负极材料的研究进展[J]. 材料导报, 2021, 35(13): 13041-13051.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed