Abstract: The new type of anion shuttle battery representing by thechloride-ion battery (CIB), is considered to be one of the competitor for the ‘next generation' large-scale electrochemical energy storage system, owing to their significant safety advantages and low cost. However, it is still a great challenge to exploit high performance cathode materials for the practical application of CIBs. Layered double hydroxides (LDHs) have been considered as highly potential cathodes for CIBs because of their tunable interlayer spacing and unique topological transformation characte-ristic. Herein, the chloride inserted grain-like NiFe LDH (g-NiFe-Cl LDH) with large specific surface area is prepared using the MIL-88A as precursor through the hydrolysis process followed by anion exchange methode. The g-NiFe-Cl LDH could not only overcome the inherent defects of laminated stack by LDHs nanosheets, but also increase the exposure rate of electrochemical active sites, which accordingly improves the effective contact between electrode and electrolyte and promotes the chloride ion diffusion kinetics. The g-NiFe-Cl LDH is then used as cathode for CIB, which delivers a maximum discharge specific capacity of 286.1 mAh/g and a stable capacity of 155.3 mAh/g over 200 cycles. The Cl-storage mechanism of g-NiFe-Cl LDH cathode is also revealed that the reversible intercalation/deintercalation of chloride ions in LDH gallery along with the oxidation state changes in Ni2+/Ni3+ and Fe2+/Fe3+ oxidation couples. This work proviedes some new insights for the design and performance enhancement for the new LDHs-based anionic energy storage system.
1 Anji R M, Fichtner M. Journal of Materials Chemistry, 2011, 21, 17059. 2 Davis V K, Bates C M, Omichi K, et al. Science, 2018, 362, 1144. 3 Yang C, Chen J, Wang C, et al. Nature, 2019, 569, 245. 4 Karkera G, Reddy M A, Fichtner M. Journal of Power Sources, 2021, 448, 228877. 5 Liu Q, Wang Y, Wang G, et al. Chemistry, 2021, 7, 109. 6 Zhao X, Shen X. Materials China, 2015, 34(11), 847(in Chinese). 赵相玉, 沈晓冬. 中国材料进展, 2015, 34(11), 847. 7 Gao P, Reddy M A, Fichtner M, et al. Angewandte Chemie International Edition, 2016, 55, 4285. 8 Zhao X, Zhao-Karger Z, Fichtner M, et al. Angewandte Chemie International Edition, 2013, 52, 13621. 9 Zhao X, Zhao Z, Shen X, et al. ACS Applied Materials & Interfaces, 2017, 9, 2535. 10 Yang R, Yu T, Zhao X. Journal of Alloys and Compounds, 2019, 788, 407. 11 Yu J, Wang Q, O'Hare D, et al. Chemical Society Reviews, 2017, 46, 5950. 12 Ma R, Liu Z, Sasaki T, et al. Journal of the American Chemical Society, 2007, 129, 5257. 13 Ma R, Iyi N, Sasaki T, et al. Angewandte Chemie International Edition, 2008, 47, 86. 14 Furukawa Y, Tadanaga K, Tatsumisago M, et al. Solid State Ionics, 2011, 192, 185. 15 Yin Q, Han J, Wei M, et al. Advanced Functional Materials, 2019, 29, 1900983. 16 Yin Q, Zhang J, Han J, et al. Chemical Engineering Journal, 2020, 389, 124376. 17 Wang G, Li Y, Hou L, et al. Angewandte Chemie International Edition, 2022, 61, e202205427. 18 Li Y, Wang G, Zhu Z, et al. ACS Applied Materials & Interfaces, 2021, 13, 4102. 19 Yin Q, Li Y, Sui Y, et al. Chemical Science, 2023, 14, 5643. 20 Song Z, Meng Q, Qi J, et al. Journal of Electroanalytical Chemistry, 2023, 936, 117379. 21 Ye Z, Jiang Y, Chen R, et al. Nano-Micro Letters, 2021, 13, 203. 22 Qian X, Chen W, Guan G, et al. Electrochimica Acta, 2023, 437, 141524. 23 Yin Q, Luo J, Han J, et al. Advanced Functional Materials, 2020, 30, 1907448. 24 Zhang S, Zhang J, Han J, et al. ACS Applied Materials & Interfaces, 2022, 14, 24518. 25 Zhao Y, Sun T, Wei M, et al. Journal of Materials Chemistry A, 2019, 7, 15371. 26 Bu R, Liu L, Chen R, et al. Shandong chemical industry, 2022, 51(17), 1(in Chinese). 卜冉冉, 刘璐, 陈瑞欣, 等, 山东化工, 2022, 51(17), 1. 27 Wang L, Guan S, Zhou S, et al. ACS Applied Materials & Interfaces, 2019, 11, 6267. 28 Fan G, Li F, Duan X, et al. Chemical Society Reviews, 2014, 43, 7040. 29 Liu X, Wang C, Han J, et al. Journal of Materials Chemistry A, 2014, 2, 1682. 30 Song X, Qi J, Yin Q, et al. Small, 2023, DOI:10. 1002/smll. 202302896. 31 Yang S, Sui Y, Yin Q, et al. Materials Horizons, DOI: 10. 1039/D3MH00706E. 32 Xu M, Wei M. Advanced Functional Materials, 2018, 28, 1802943. 33 Yu Lu, Shao Lianyi, Wang Shige, et al. Materials Today Physics, 2022, 22, 100593. 34 Xie L, Xiao W H, Shi X Y, et al. Chemical Communication, 2022, 58, 13807. 35 Guan Jieduo, Huang Qiaofeng, Shao Lianyi, et al. Small, 2023, 19, 2207148. 36 Simon P, Gogotsi Y, Dunn B. Science, 2014, 343, 1210. 37 Zhao X, Ren S, Michael B, et al. Journal of Power Sources 2014, 245, 706. 38 Lakshmi K, Janas K, Shaijumon M. Journal of Power Sources, 2019, 433, 126685. 39 Wang J, Polleux J, Dunn B, et al. Journal of Physical Chemistry C, 2017, 111, 14925.