Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20080007-13    https://doi.org/10.11896/cldb.20080007
  无机非金属及其复合材料 |
生物多糖衍生的超级电容器用碳电极材料研究进展
李凯旋, 王焕磊
中国海洋大学材料科学与工程学院,山东 青岛 266100
A Review on Biological Polysaccharide Derived Carbon Electrode for Supercapacitors
LI Kaixuan, WANG Huanlei
School of Materials Science and Engineering,Ocean University of China, Qingdao 266100, Shandong, China
下载:  全 文 ( PDF ) ( 13567KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超级电容器因具有高功率密度和长循环寿命等特性得到了越来越多的重视。在超级电容器电极材料中,碳材料因其大比表面积、多孔结构和良好的结构稳定性而备受关注。活性炭是超级电容器中应用最广泛的电极材料,但其不连通的孔道结构导致了低比容量和能量密度。而石墨烯因比容量高、离子和电子传输快等优点发展迅速,但石墨烯片层容易团聚、密度低以及制备成本相对较高等不足限制了其应用。因此寻找和制备低成本、可持续、结构优异的碳电极材料成为摆在研究者面前的现实问题。   采用生物多糖(纤维素、甲壳素、壳聚糖和淀粉等)制备碳电极的方法在成本方面极具优势。近年来,通过直接利用多糖的天然结构或结合生物多糖的结构特点和成分组成,以碳化活化、模板法、静电纺丝等技术手段,对生物多糖衍生碳的形貌、微观结构、孔隙结构、组成等方面进行调控,使其在超级电容器中实现了优异的电化学性能。更重要的是某些生物多糖自身含有异质原子,无需繁琐的掺杂步骤便能实现杂原子掺杂,而杂原子可提高碳材料的浸润性并调控电荷分布,从而提升材料的性能。本文综述了生物多糖衍生的超级电容器用碳电极材料的研究进展,介绍了影响碳电极储能的因素,同时在介绍生物多糖衍生的碳电极材料的基础上,阐明了不同维度生物多糖衍生碳材料的形貌与结构特点对其作为超级电容器电极材料性能的影响规律。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李凯旋
王焕磊
关键词:  生物多糖  碳电极材料  超级电容器  纤维素  甲壳素    
Abstract: Supercapacitors with high power density and long cycling stability have attracted extensive attention. Carbon materials with large specific surface area, porous structure and good structural stability have been considered as promising electrodes for supercapacitors. Activated carbon is the most widely used electrode for supercapacitors, but activated carbon with micropores structure usually has impeded ion transport, leading to low specific capacitance and energy density. Recently, graphene shows the advantages associated with high capacitance, fast ion and electron transport as electrode for supercapacitors. However, the easy agglomeration of graphene layers, low packing density and high cost of graphene restrict its practical application. Therefore, it is a great challenge to design low-cost and sustainable carbon electrodes with novel structure. Preparing carbon electrodes by using biological polysaccharide, such as cellulose, chitin, chitosan and starch, displays great potential advantage for achieving carbon electrode with lowcost. In recent years, by directly utilizing the natural structure and combining the structural composition with characteristics of biological polysaccharide, the carbonization-activation method, template method, and electrospinning method are utilized to control the morphology, microstructure, pore structure and composition of the biological polysaccharide derived carbons, and the resultant carbons exhibit excellent electrochemical performance for supercapacitors. It is worth to note that heteroatoms in biological polysaccharides itself can realize heteroatom-doping in carbons without complicated procedures, and heteroatoms in carbon frameworks can improve the wettability and tune the charge distribution, which is beneficial for the improvement of electrochemical performance. In this review, we summarize the research progress with respect to biological polysaccharide derived carbon electrodes for supercapacitors. The factors affecting the ability of energy storage behaviors for the carbon electrode are emphatically introduced. At the same time, based on the introduction of carbon electrode materials derived from biological polysaccharides, the biological polysaccharide derived carbon electrodes are classified based on different dimensions, and the influences of various morphological and structural characteristics of biological polysaccharide derived carbon electrodes on their electrochemical performances for supercapacitors are significantly illustrated.
Key words:  biological polysaccharide    carbon electrode materials    supercapacitor    cellulose    chitin
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  O646  
基金资助: 山东省重点研发计划(公益类科技攻关)(2019GGX102038);中央高校基本科研业务费专项(201822008;201941010);青岛市应用基础研究计划(19-6-2-77-cg);山东省自然科学基金(ZR2020ME038)
通讯作者:  huanleiwang@ouc.edu.cn   
作者简介:  李凯旋,2019年毕业于安徽理工大学,获得工学学士学位。现为中国海洋大学材料科学与工程学院硕士研究生,在王焕磊教授的指导下进行研究。目前主要的研究方向为超级电容器用碳电极材料。
王焕磊,2011年毕业于中国科学院上海硅酸盐研究所,获得工学博士学位。现为中国海洋大学材料科学与工程学院教授、博士研究生导师。研究兴趣主要集中在碳基功能材料的设计制备及其在超级电容器、二次电池、催化等领域的应用。
引用本文:    
李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
LI Kaixuan, WANG Huanlei. A Review on Biological Polysaccharide Derived Carbon Electrode for Supercapacitors. Materials Reports, 2022, 36(1): 20080007-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080007  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20080007
[1] Dong X, Jin H, Wang R, et al. Advanced Energy Materials, 2018, 8(11), 1702695.
[2] Wu F, Gao J, Zhai X, et al. Carbon, 2019, 147, 242.
[3] Hou Y, Chai D, Li B, et al. ACS Applied Materials & Interfaces, 2019, 11(23), 20845.
[4] Wang Q, Ma Y, Liang X, et al. Chemical Engineering Journal, 2019, 371, 145.
[5] Myung Y, Jung S, Tung T T, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(4), 3772.
[6] Li Y, Wang H, Wang L, et al. Small, 2019, 15(9), 1804539.
[7] Zhang L L,Zhao X S. Chemical Society Reviews, 2009, 38(9), 2520.
[8] Liu M, Niu J, Zhang Z, et al. Nano Energy, 2018, 51, 366.
[9] Selvaraj T, Perumal V, Khor S F, et al. Materials Research Bulletin, 2020, 126, 110839.
[10] Huang Y, Kormakov S, He X, et al. Polymers, 2019, 11(2), 187.
[11] Guo N, Luo W, Guo R, et al. Journal of Alloys and Compounds, 2020, 834, 155115.
[12] Li S J, Zhang J G, Li J X, et al. Journal of Materials Engineering, 2018, 46(7), 157(in Chinese).
李诗杰, 张继刚, 李金晓,等.材料工程, 2018, 46 (7), 157.
[13] Ji H, Zhao X, Qiao Z, et al. Nature Communications, 2014, 5, 3317.
[14] Hulicova-Jurcakova D, Kodama M, Shiraishi S, et al. Advanced Functional Materials, 2009, 19(11), 1800.
[15] Chu M, Zhai Y, Shang N, et al. Applied Surface Science, 2020, 517, 146140.
[16] Portet C, Yushin G,Gogotsi Y. Journal of the Electrochemical Society, 2008, 155(7), 531.
[17] Peng S S, Yang M H, Zhang W K, et al. Microporous and Mesoporous Materials, 2017, 242, 18.
[18] Pei Z, Meng Q, Wei L, et al. Energy Storage Materials, 2020, 28, 55.
[19] Xie Z, Shang X, Yang J, et al. Carbon, 2020, 158, 184.
[20] Kasturi P R, Ramasamy H, Meyrick D, et al. Journal of Colloid and Interface Science, 2019, 554, 142.
[21] Zhao G, Yu D, Zhang H, et al. Nano Energy, 2020, 67, 104219.
[22] Gao F, Qu J, Zhao Z, et al. Electrochimica Acta, 2016, 190, 1134.
[23] Cheng Y, Peng J, Xu H, et al. Advanced Functional Materials, 2018, 28(49), 1800924.
[24] Nakamura M, Nakanishi M,Yamamoto K. Journal of Power Sources, 1996, 60(2), 225.
[25] Raj C J, Rajesh M, Manikandan R, et al. Journal of Power Sources, 2018, 386, 66.
[26] Huang D J, Ma Z H, Ma C Y, et al. Materials Reports B:Research Papers, 2017, 31(8), 21(in Chinese).
黄大建, 马宗红, 马晨阳, 等.材料导报:研究篇, 2017, 31(8), 21.
[27] Zhao G, Chen C, Yu D, et al. Nano Energy, 2018, 47, 547.
[28] Raymundo-Piero E, Kierzek K, Machnikowski J, et al. Carbon, 2006, 44(12), 2498.
[29] Simon P,Gogotsi Y. Nature Materials, 2008, 7(11), 854.
[30] Huang J, Sumpter B G,Meunier V. Chemistry-A European Journal, 2008, 14(22), 6614.
[31] Hulicova-Jurcakova D, Seredych M, Lu G Q, et al. Advanced Functional Materials, 2009, 19(3), 438.
[32] Sahoo G, Polaki S R, Ghosh S, et al. Energy Storage Materials, 2018, 14, 297.
[33] Wang Y, Liu R, Tian Y, et al. Chemical Engineering Journal, 2020, 384, 123263.
[34] Yu M, Wang Z, Zhang H, et al. Nano Energy, 2019, 65, 103987.
[35] Liu W J, Jiang H,Yu H Q. Energy & Environmental Science, 2019, 12(6), 1751.
[36] Ghosh S, Barg S, Jeong S M, et al. Advanced Energy Materials, 2020, 10(32), 2001239.
[37] Tian K, Wang J, Cao L, et al. Nature Communications, 2020, 11(1), 3884.
[38] Zhou J, Bao L, Wu S, et al. Carbohydrate Polymers, 2017, 173, 321.
[39] Liu M C, Lu C, Xu Y, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(22), 18690.
[40] Xing L, Chen X, Tan Z, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(7), 6601.
[41] Hao P, Zhao Z, Tian J, et al. Nanoscale, 2014, 6(20), 12120.
[42] Chen W, Luo M, Liu C, et al. Carbohydrate Polymers, 2019, 219, 229.
[43] Cheng J, Xu Q, Wang X, et al. Sustainable Energy & Fuels, 2019, 3(5), 1215.
[44] Cao J, Zhu C, Aoki Y, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(6), 7292.
[45] Deng J, Xiong T, Xu F, et al. Green Chemistry, 2015, 17(7), 4053.
[46] Deng Q, Abbas S C, Li Z, et al. Journal of Colloid and Interface Science, 2020, 574, 33.
[47] You J, Li M, Ding B, et al. Advanced Materials, 2017, 29(19), 1606895.
[48] Fu F, Yang D, Zhang W, et al. Chemical Engineering Journal, 2020, 392, 123721.
[49] Chang B, Yin H, Zhang X, et al. Chemical Engineering Journal, 2017, 312, 191.
[50] Tian W, Gao Q, Zhang L, et al. Journal of Materials Chemistry A, 2016, 4(22), 8690.
[51] Deng L, Young R J, Kinloch I A, et al. ACS Applied Materials & Interfaces, 2013, 5(20), 9983.
[52] Fang K, Chen M, Chen J, et al. Applied Surface Science, 2019, 475, 372.
[53] Kang Y J, Chun S J, Lee S S, et al. ACS Nano, 2012, 6(7), 6400.
[54] Chen L F, Huang Z H, Liang H W, et al. Energy & Environmental Science, 2013, 6(11), 3331.
[55] You J, Zhu L, Wang Z, et al. Chemical Engineering Journal, 2018, 344, 498.
[56] Zheng S, Cui Y, Zhang J, et al. RSC Advances, 2019, 9(19), 10976.
[57] Duan B, Gao X, Yao X, et al. Nano Energy, 2016, 27, 482.
[58] Long C, Qi D, Wei T, et al. Advanced Functional Materials, 2014, 24(25), 3953.
[59] Chen Q, Tan X, Liu Y, et al. Journal of Materials Chemistry A, 2020, 8(12), 5773.
[60] Chen H, Liu D, Shen Z, et al. Electrochimica Acta, 2015, 180, 241.
[61] Wu Z S, Winter A, Chen L, et al. Advanced Materials, 2012, 24(37), 5130.
[62] Wu Z S, Parvez K, Winter A, et al. Advanced Materials, 2014, 26(26), 4552.
[63] Chen W, Wang X, Hashisho Z, et al. Microporous and Mesoporous Materials, 2019, 280, 57.
[64] Kappe C O. Angewandte Chemie International Edition, 2004, 43(46), 6250.
[65] Menéndez J A, Arenillas A, Fidalgo B, et al. Fuel Processing Technology, 2010, 91(1), 1.
[66] Li X Q, Chang L, Zhao S L, et al. Acta Physico-Chimica Sinica, 2017, 33(1), 130(in Chinese).
李雪芹, 常琳, 赵慎龙, 等. 物理化学学报, 2017, 33(1), 130.
[67] Liu W J, Jiang H,Yu H Q. Chemical Reviews, 2015, 115(22), 12251.
[68] Li H, Zhao Y, Liu S, et al. Microporous and Mesoporous Materials, 2020, 297, 109960.
[69] Li X, Guan B Y, Gao S, et al. Energy & Environmental Science, 2019, 12(2), 648.
[70] Yao L, Wu Q, Zhang P, et al. Advanced Materials, 2018, 30(11), 1706054.
[71] Li L, Jia C, Shao Z, et al. Chemical Engineering Journal, 2019, 370, 508.
[72] Liu B, Yang M, Chen H, et al. Journal of Power Sources,2018,397,1.
[73] Titirici M M, White R J, Brun N, et al. Chemical Society Reviews, 2015, 44(1), 250.
[74] Wang H, Xu Z, Kohandehghan A, et al. ACS Nano, 2013, 7(6), 5131.
[75] Xue Y, Zhang Q, Wang W, et al. Advanced Energy Materials, 2017, 7(19), 1602684.
[76] You J, Li M, Ding B, et al. Advanced Materials, 2017, 29(19), 1606895.
[77] Cao Q, Zhang Y, Chen J, et al. Industrial Crops and Products, 2020, 148, 112181.
[78] Chen L F, Huang Z H, Liang H W, et al. Advanced Functional Mate-rials, 2014, 24(32), 5104.
[79] Wu X, Zhang M, Song T, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 13096.
[80] Gao Y, Xia Y, Wan H, et al. Electrochimica Acta, 2019, 301, 294.
[81] Gao L, Xiong L, Xu D, et al. ACS Applied Materials & Interfaces, 2018, 10(34), 28918.
[82] Smirnov M A, Sokolova M P, Bobrova N V, et al. Journal of Energy Chemistry, 2018, 27(3), 843.
[1] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[2] 郑海宇, 王琴, 王悦, 张瑞峰, 刘克俊. 环境温度对纤维素醚改性石膏工作性的影响[J]. 材料导报, 2021, 35(z2): 649-654.
[3] 时钢印, 彭龙泉, 马莉. 基于专利视角的偏光片用三醋酸纤维素膜发展研究[J]. 材料导报, 2021, 35(z2): 678-683.
[4] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[5] 武梓诺, 贾泓钰, 张宇晴, 陈旸. 口腔托槽用ZTA陶瓷材料凝胶注模成型工艺的研究[J]. 材料导报, 2021, 35(Z1): 100-103.
[6] 孙义民, 易荣华, 段纪青, 周爱军. 基于有序结构镍钴双金属氧族化合物纳米阵列/碳泡沫复合材料的柔性不对称超级电容器[J]. 材料导报, 2021, 35(16): 16001-16007.
[7] 魏洁, 邵自强. 纳米纤维素材料在功能膜材料中的应用研究进展[J]. 材料导报, 2021, 35(1): 1203-1211.
[8] 金克霞, 江泽慧, 马建锋, 傅峰, 杨淑敏, 刘杏娥. 纤维素纳米晶基导电复合材料的应用进展[J]. 材料导报, 2020, 34(Z2): 521-524.
[9] 张绍康, 王茹, 徐玲琳, 钟世云, 张国防, 王培铭. 羟乙基甲基纤维素改性水泥砂浆的物理力学性能和孔隙率[J]. 材料导报, 2020, 34(Z2): 607-611.
[10] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[11] 姜宽, 戚承志, 崔英洁, 李太行, 卢真辉. 纤维素等若干因素对仿钢纤维增强透水混凝土性能的影响[J]. 材料导报, 2020, 34(Z1): 189-192.
[12] 江凯, 周雪松. 细菌纤维素复合材料高值化利用的研究进展[J]. 材料导报, 2020, 34(9): 9164-9169.
[13] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[14] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[15] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed