Please wait a minute...
材料导报  2022, Vol. 36 Issue (1): 20080005-13    https://doi.org/10.11896/cldb.20080005
  无机非金属及其复合材料 |
黄铁矿型FeS2的制备及其储能应用
李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越
北京大学地球与空间科学学院,北京 100871
Synthesis and Energy Storage Application of Pyrite FeS2
LI Jianzhuo, CHUAN Xiuyun, YANG Yang, LIU Fangfang, QI Pengyue
School of Earth and Space Sciences, Peking University, Beijing 100871, China
下载:  全 文 ( PDF ) ( 18213KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 能源与环境是当今社会发展的两大重要问题。随着化石能源的枯竭和环境污染的日益严重,寻找清洁的替代能源已成为当今社会的普遍共识,新型能源储存和转换器件,如二次锂/钠电池和超级电容器等成为研究热点,而合适的电极材料是提升其电化学性能和实现其产业化的关键。二硫化铁(FeS2)是一种具有高理论比容量的过渡族金属硫化物,在自然界以黄铁矿的形式存在,储量丰富、分布广泛、环保无毒,目前在商用高能Li-FeS2一次电池中得到了产业化应用并大量投放市场,而且在二次锂/钠电池和超级电容器等新型储能器件上展现出极大的潜力,成为新能源产业研究的重点和热点。目前FeS2的储能研究主要包括两个方面:化学合成法制备FeS2和天然FeS2的加工处理。但是,FeS2电导率较低和循环过程中稳定性较差是其在储能应用中亟待解决的问题。FeS2的纳米设计是目前提升其电化学性能的主要途径。本文介绍了FeS2的晶体结构,简要叙述了纳米黄铁矿型FeS2的制备方法,包括化学合成纳米FeS2和天然黄铁矿的加工;此外,简要综述了纳米FeS2在锂/钠电池和超级电容器中的储能机理及研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李搛倬
传秀云imgsrc='邮箱.tif'/>
杨扬
刘芳芳
齐鹏越
关键词:  黄铁矿型二硫化铁  水热/溶剂热法  化学气相沉积法  高温硫化法  热注入法  天然黄铁矿锂/钠电池  超级电容器    
Abstract: Energy and environment are two important issues in today’s social development. With the depletion of fossil energy and the increasingly se-rious environmental pollution, it has become a consensus to search for clean alternative energy. New energy storage and conversion devices, such as secondary lithium/sodium batteries and supercapacitors, have become a research hotspot. Appropriate electrode materials are the key to improve electrochemical performance and realize industrialization. Pyrite iron disulfide(FeS2) is a kind of transition metal sulfide with a high theoretical specific capacity, which exists in the form of pyrite in nature, with abundant reserves, wide distribution, environmental protection and non-toxic. FeS2 has been widely applied in commercial high-energy Li-FeS2 primary batteries and put into the market in large quantities at present. Moreover, FeS2 shows great potential in secondary lithium/sodium batteries and supercapacitors, becoming the focus and hotspot of new energy industry research. The energy storage research of FeS2 mainly includes two aspects: FeS2 prepared by chemical synthesis methods and processing of natural FeS2. However, the low conductivity of FeS2 and poor stability during cycling are the urgent problems to be solved in the application of FeS2 materials in energy storage. Nano design of FeS2 is the main way to improve its electrochemical performance. In this paper, the crystal structure of FeS2 is introduced, and the preparation methods of nanosized pyrite FeS2 are briefly described, including the chemical synthesis of nanosized FeS2 and the processing of natural pyrite. Besides, the energy storage mechanism and research progress of nanoscale FeS2 in lithium/sodium batteries and supercapacitors are briefly reviewed.
Key words:  pyrite iron disulfide    hydrothermal/solvothermal method    chemical vapor deposition method    high temperature sulfuration    hot injection    natural pyrite lithium/sodium batteries    supercapacitors
出版日期:  2022-01-13      发布日期:  2022-01-13
ZTFLH:  TQ152  
基金资助: 国家自然科学基金(51774016);北京大学开放测试基金(0000012321)
通讯作者:  xychuan@pku.edu.cn   
作者简介:  李搛倬,2018年6月毕业于西安科技大学,获得理学学士学位。现为北京大学地球与空间科学学院硕士研究生,在传秀云教授的指导下进行研究。主要研究领域为黄铁矿型FeS2在储能器件上的应用。
传秀云,北京大学地球与空间科学学院教授、博士研究生导师。在中国地质大学材料科学与工程专业取得博士学位。2004年获得“侯德封矿物岩石地球化学青年科学家奖”。主要从事碳石墨科学、纳米矿物材料、环境矿物学的研究工作。与美国华盛顿大学、美国哥伦比亚大学、日本爱知工业大学、法国国家科研中心、美国密西根大学、香港大学、德国伊尔梅瑙工业大学等具有交流与合作关系。
引用本文:    
李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
LI Jianzhuo, CHUAN Xiuyun, YANG Yang, LIU Fangfang, QI Pengyue. Synthesis and Energy Storage Application of Pyrite FeS2. Materials Reports, 2022, 36(1): 20080005-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20080005  或          http://www.mater-rep.com/CN/Y2022/V36/I1/20080005
[1] Merki D, Fierro S, Vrubel H, et al. Chemical Science, 2011, 2(7), 1262.
[2] Liu J, Cao G, Yang Z, et al. ChemSusChem, 2008, 1(8-9), 676.
[3] Winter M, Brodd R J. Chemical Reviews, 2004, 104, 4245.
[4] Gur I, Fromer N A, Geier M L, et al. Science, 2005, 310, 462.
[5] Wadia C, Alivisatos A P, Kammen D M. Environmental Science & Technology, 2009, 43(6), 2072.
[6] Jing P, Wang Q, Wang B, et al. Carbon, 2020, 159, 366.
[7] Yersak T A, Macpherson H A, Kim S C, et al. Advanced Energy Mate-rials, 2013, 3(1), 120.
[8] Yu S, Ng V M H, Wang F, et al. Journal of Materials Chemistry A, 2018, 6(20), 9332.
[9] Schlapbach L, Züttel A. Nature, 2001, 414, 353.
[10] Zhang Q, Cao G. Journal of Materials Chemistry, 2011, 21(19), 6769.
[11] Zhao P, Cui H, Luan J, et al. Materials Letters, 2017, 186, 62.
[12] Wu R, Zheng Y F, Zhang X G, et al. Journal of Crystal Growth, 2004, 266(4), 523.
[13] Huhlig I, Szargan R, Nesbitt H W, et al. Applide Surface Science, 2001, 179, 222.
[14] Burda C, Chen X, Narayanan R, et al. Chemical Reviews, 2005, 105, 1025.
[15] Zhu L, Richardson B, Tanumihardja J, et al. CrystEngComm, 2012, 14(12), 4188.
[16] Morales-Gallardo M V, Ayala A M, Pal M, et al. Chemical Physics Letters, 2016, 660, 93.
[17] Kush P, Mehra N C, Deka S. Science of Advanced Materials, 2013, 5(7), 788.
[18] Liang Y, Bai P, Zhou J, et al. CrystEngComm, 2016, 18(33), 6262.
[19] Chen Y, Zheng Y, Zhang X, et al. Science in China Series G: Physics, Mechanics & Astronomy, 2005, 48, 188.
[20] Zhang D, Wu G, Xiang J, et al. Materials Science and Engineering: B, 2013, 178(8), 483.
[21] Hu Z, Zhu Z, Cheng F, et al. Energy & Environmental Science, 2015, 8(4), 1309.
[22] Kar S, Chaudhuri S. Chemical Physics Letters, 2004, 398(1-3), 22.
[23] Sasaki Y, Sugii A, Ishii K. Journal of Materials Science Letters, 1999, 18, 1193.
[24] Takahashi N, Yatomi T, Nakamura T. Solid State Sciences, 2004, 6(11), 1269.
[25] Samad L, Cabán-Acevedo M, Shearer M J, et al. Chemistry of Materials, 2015, 27(8), 3108.
[26] Berry N, Cheng M, Perkins C L, et al. Advanced Energy Materials, 2012, 2(9), 1124.
[27] Li L, Caban-Acevedo M, Girard S N, et al. Nanoscale, 2014, 6(4), 2112.
[28] Wang M, Xing C, Cao K, et al. Journal of Materials Chemistry A, 2014, 2(25), 9496.
[29] Caban-Acevedo M, Faber M S, Tan Y, et al. Nano Letters, 2012, 12(4), 1977.
[30] Park J, Joo J, Kwon S G, et al. Angewandte Chemie, 2007, 46(25), 4630.
[31] Bhandari K P, Roland P J, Kinner T, et al. Journal of Materials Chemistry A, 2015, 3(13), 6853.
[32] Walter M, Zund T, Kovalenko M V. Nanoscale, 2015, 7(20), 9158.
[33] Ge H, Hai L, Prabhakar R R, et al. RSC Advances, 2014, 4(32), 16489.
[34] Tang Z, Cui Y, Xue J, et al. Transactions of Tianjin University, 2006, 12, 42.
[35] Wang D G,Fan L R,Wang S P, et al. Materials Review B: Research Paper, 2012, 26(9), 93(in Chinese)
王大刚, 范力仁, 王圣平,等. 材料导报B:研究篇, 2012, 26(9), 93.
[36] Zhao H, Wang S, Fan L, et al. Functional Materials Letters, 2014, 7(1), 1350069.
[37] Montoro L. Solid State Ionics, 2003, 159(3-4), 233.
[38] Ding L, Fan X, Sun X, et al. RSC Advances, 2013, 3(14), 4539.
[39] Qin H, Jia J, Lin L, et al. Materials Science and Engineering: B, 2018, 236-237, 104.
[40] Goodenough J B, Kim Y. Journal of Power Sources, 2011, 196(16), 6688.
[41] Goodenough J B, Park K S. Journal of the American Chemical Society, 2013, 135(4), 1167.
[42] Deng R R,Wu Q Q. Chinese Battery Industry, 2005, 10(1), 14(in Chinese)
邓润荣, 吴前麒. 电池工业, 2005, 10(1), 14.
[43] Feng X,He X M,Pu W H, et al. Progress in Chemistry, 2008, 20(203), 396(in Chinese)
冯旭, 何向明, 蒲薇华,等. 化学进展, 2008, 20(203), 396.
[44] Liu J, Wen Y, Wang Y, et al. Advanced Materials, 2014, 26(34), 6025.
[45] He X W, Liu J H, Yang J F. Battery Bimonthly, 2004, 34(4), 276.
何献文, 刘建华, 杨建峰.电池, 2004, 34(4), 276.
[46] Iwakura C, Isobe N, Tamura H. Electrochimica Acta, 1983, 28(3), 277.
[47] Yang S H, Quinn C H. Electrochimica Acta, 2001, 46, 2613.
[48] Yamaguchi Y, Takeuchi T, Sakaebe H, et al. Journal of the Electrochemical Society, 2010, 157(6), A630.
[49] Zhang D, Mai Y J, Xiang J Y, et al. Journal of Power Sources, 2012, 217, 229.
[50] Rong H,Wang C G,Zhou M. Chemical Journal of Chinese Universities, 2020, 41(3), 447(in Chinese)
荣华, 王春刚, 周明. 高等学校化学学报, 2020, 41(3), 447.
[51] Liu Y, Wang W, Chen Q, et al. Inorganic Chemistry, 2019, 58(2), 1330.
[52] Ding W, Wang X, Peng H, et al. Materials Research Bulletin, 2013, 48(11), 4704.
[53] Liu Z, Lu T, Song T, et al. Energy & Environmental Science, 2017, 10(7), 1576.
[54] Wang F, Li G, Meng X, et al. Inorganic Chemistry Frontiers, 2018, 5(10), 2462.
[55] Chen Y, Hu X, Evanko B, et al. Nano Energy, 2018, 46, 117.
[56] Chen Y, Chen G Z. Acta Physico-Chimica Sinica, 2020, 36(2), 1904025.
[57] He T, Zhang W, Manasa P, et al. Journal of Alloys and Compounds, 2020, 812, 152138.
[58] Chen J, Zhou X, Mei C, et al. Electrochimica Acta, 2016, 222, 172.
[59] Pei L, Yang Y, Chu H, et al. Ceramics International, 2016, 42(4), 5053.
[60] Balakrishnan B, Balasingam S K, Sivalingam Nallathambi K, et al. Journal of Industrial and Engineering Chemistry, 2019, 71, 191.
[61] Sridhar V, Park H. Journal of Alloys and Compounds, 2018, 732, 799.
[1] 李凯旋, 王焕磊. 生物多糖衍生的超级电容器用碳电极材料研究进展[J]. 材料导报, 2022, 36(1): 20080007-13.
[2] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[3] 孙义民, 易荣华, 段纪青, 周爱军. 基于有序结构镍钴双金属氧族化合物纳米阵列/碳泡沫复合材料的柔性不对称超级电容器[J]. 材料导报, 2021, 35(16): 16001-16007.
[4] 金克霞, 江泽慧, 马建锋, 傅峰, 杨淑敏, 刘杏娥. 纤维素纳米晶基导电复合材料的应用进展[J]. 材料导报, 2020, 34(Z2): 521-524.
[5] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[6] 张伟业, 刘毅, 郭洪武. 木质基电化学储能器件的研究进展[J]. 材料导报, 2020, 34(23): 23001-23008.
[7] 裴贺兵, 莫尊理, 郭瑞斌, 刘妮娟, 贾倩倩, 高琴琴. 石墨烯量子点:兼具高效和环保的新型超级电容器电极材料[J]. 材料导报, 2020, 34(21): 21093-21098.
[8] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[9] 张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
[10] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[11] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[12] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[13] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[14] 苏文静, 金良茂, 金克武, 王天齐, 汤永康, 甘治平. 化学气相沉积法较低温度下制备层状硫化钼薄膜的研究[J]. 材料导报, 2019, 33(z1): 158-160.
[15] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed