Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16016-16019    https://doi.org/10.11896/cldb.19090114
  无机非金属及其复合材料 |
超薄二氧化锰@碳纳米球复合材料的制备及电容特性
王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱
安徽科技学院化学与材料工程学院,凤阳 233100
Preparation of Manganese Dioxide Ultrathin Nanosheets@Carbon Nanosphere Composites and Their Capacitance Properties
WANG Guiling, DU Mengyu, MA Chenchao, NIU Xingyu, ZHANG Weimin, WANG Xinyu
College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, China
下载:  全 文 ( PDF ) ( 4507KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用液相沉淀法制备了二氧化锰@碳纳米球电极材料,通过碳纳米球复合的方式对二氧化锰进行改性。经XRD分析可知,合成的材料以水钠锰矿的形式存在;由TEM和SEM分析可知,碳纳米球均匀分布在片层状二氧化锰的表面,使其更加饱满充实。由电化学测量可知,适量碳纳米球的引入明显提高了材料的电化学性能,在二氧化锰复合碳纳米球摩尔分数为100%时,所得材料拥有最佳比容量,即在1 A· g-1电流密度下放电比容量为166.3 F·g-1,当电流密度增加到10 A·g-1时,材料的比容量仍能保持在135.9 F·g-1,经历2 000次循环后电容保持率高达95.1%,说明材料具有优异的倍率特性和较高的稳定性。这可能是由于引入碳纳米球后提高了水钠锰矿的导电性,从而增加了其活性位点的数量。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王桂玲
杜梦宇
马陈超
牛星雨
张卫民
王欣昱
关键词:  二氧化锰  碳纳米球  片层结构  超级电容器    
Abstract: In this paper, manganese dioxide nanosheets@carbon nanospheres electrode material was prepared by liquid phase precipitation method. XRD analysis showed that the synthesized material was in the form of sodium manganese dioxide. Electrochemical measurements showed that the introduction of appropriate amount of carbon nanospheres significantly improved the electrochemical properties of the materials, and the 100 mol% carbon nanospheres composite material had the best specific volume: the specific capacity was 166.3 F · g-1 at the current density of 1 A · g-1. When the current density increased to 10 A · g-1, the specific volume remained at 135.9 F · g-1, and the capacitance retention rate was 95.1% after 2 000 cycles, which indicated that the material had excellent rate capacity and high stability. Maybe that’s because the elevated conductivity increased active sites number of sodium manganese with the introduction of carbon nanospheres.
Key words:  manganese dioxide    carbon nanosphere    lamellar structure    supercapacitor
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  O646.5  
基金资助: 安徽省自然科学基金青年基金项目(1908085QB84);安徽省科技重大专项基金(18030901087)
通讯作者:  wangguilingcg@126.com   
作者简介:  王桂玲,讲师,2016年1月毕业于燕山大学,获得工学博士学位。同年于安徽科技学院任教,主要从事新能源材料的制备及超级电容器研究。
引用本文:    
王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
WANG Guiling, DU Mengyu, MA Chenchao, NIU Xingyu, ZHANG Weimin, WANG Xinyu. Preparation of Manganese Dioxide Ultrathin Nanosheets@Carbon Nanosphere Composites and Their Capacitance Properties. Materials Reports, 2020, 34(16): 16016-16019.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19090114  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16016
1 Liu C, Han G, Chang Y et al. Chemical Engineering Journal, 2017, 328,25.
2 Zhang Y, Li L, Zhang L, et al. Nano Energy, 2017,31, 174.
3 Yao B, Wang H, Zhou Q, et al. Advanced Materials, 2017, 29, 1700974.
4 Zhang Q, Zhao B, Wang J,et al. Nano Energy, 2016,28, 475.
5 Simon P,Gogotsi Y,Dunn B, et al.Science, 2014,343,1210.
6 Patake V D,Lokhande C D,Joo O S,et al. Applied Surface Science, 2009,255(7), 4192.
7 Conway B E. Journal of The Electrochemical Society, 1991, 138(6), 1539.
8 Ahn Y R,Song M Y,Jo S M,et al. Nanotechnology, 2006,17(12), 2865.
9 Hu C C,Huang C M,Chang K H. Journal of Power Sources, 2008,185(2), 1594.
10 Kandalkar S G,Gunjakar J L,Lokhande C D et al. Applied Surface Science, 2008,254(17), 5540.
11 Din H, Achour A, Vizirean U S, et al. Nano Energy, 2014, 10, 288.
12 Zhang K, Han X, Hu Z, et al. Chemical Society Reviews, 2015, 44, 699.
13 Xu C, Kang F, Li B,et al. Journal of Materials Research, 2011,25, 1421.
14 Tian Y H, Fu X T, Wu B R. Journal of Power Sources, 2002(6), 466(in Chinese).
田艳红,付旭涛,吴伯荣. 电源技术, 2002(6), 466.
15 Yin J L, Li Y D. Chemical Engineer, 2011, 47(7),42(in Chinese).
殷金玲,李一栋. 化学工程师, 2011, 47(7),42.
16 Zhang X Y, Han L Q, Sun S, et al.Journal of Alloys and Compounds, 2015, 653, 539.
17 Chen S, Zhu J W, Wu X D, et al. ACS Nano, 2010, 4(5),2822.
18 Rakhi R B, Chen J W, Cha D, et al. Advanced Energy Materials, 2012, 2(3), 381.
19 Zhao Y, Meng Y N, Jiang P. Journal of Power Sources, 2014,259, 219.
20 Kanoh H, Tang W, Makita Y, et al. Langmuir, 1997,13, 6845.
[1] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[2] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[3] 黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
[4] 孙宏宇, 高静怡, 潘超. 蒲公英基三维分级多孔炭的制备及电化学性能[J]. 材料导报, 2020, 34(4): 4007-4012.
[5] 徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
[6] 张文林, 冉奋. 具有高比电容的蘑菇衍生碳材料[J]. 材料导报, 2020, 34(12): 12010-12014.
[7] 任瑞丽, 王会才, 高丰, 岳瑞瑞, 汪振文. 石墨烯基柔性超级电容器复合电极材料的研究进展[J]. 材料导报, 2020, 34(11): 11099-11105.
[8] 李寒, 孙志鹏, 贾殿赠. 柔性钛箔上生长的自支撑TiO2@NiCo2S4阵列复合材料用作高性能非对称超级电容器电极[J]. 材料导报, 2020, 34(1): 1187-1194.
[9] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[10] 张涛, 孙友谊, 刘亚青. 静电纺丝法制备壳聚糖/聚乙烯醇基复合碳纳米纤维及其电化学性能[J]. 材料导报, 2019, 33(Z2): 516-520.
[11] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[12] 杜伟, 王小宁, 鞠翔宇, 孙学勤. 用于超级电容器电极的柚子皮/聚苯胺原位复合碳化材料[J]. 材料导报, 2019, 33(4): 719-723.
[13] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[14] 王亚斌, 郭敏, 史时辉, 呼科科, 张耀霞, 刘忠. 树枝状纤维形纳米球催化剂的研究进展[J]. 材料导报, 2019, 33(21): 3596-3605.
[15] 王永亮, 王春锋, 马荣鑫, 韩志东. 低缺陷密度石墨烯与Co3O4复合材料的制备及电化学性能[J]. 材料导报, 2019, 33(18): 3156-3160.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed