Please wait a minute...
材料导报  2020, Vol. 34 Issue (14): 14016-14022    https://doi.org/10.11896/cldb.19070057
  无机非金属及其复合材料 |
双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素
徐祺1, 王三反1, 孙百超2
1 兰州交通大学环境与市政工程学院, 寒旱地区水资源综合利用教育部工程研究中心, 兰州 730070
2 中建钢构有限公司, 深圳 518000
Control Factors of Electrolytic Manganese and Particulate Electrolytic Manganese Dioxide in Double-membrane Three-chamber Electrolyzer
XU Qi1, WANG Sanfan1, SUN Baichao2
1 Engineering Research Center of Water Resources Utilization in Cold and Drought Region, Ministry of Education, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2 China Construction Steel Structure Corp. LTD, Shenzhen 518000, China
下载:  全 文 ( PDF ) ( 5221KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用双膜三室电解法同槽电解金属锰和微粒电解二氧化锰,同时中隔室回收硫酸。分别研究了Mn2+浓度、电流密度、电解温度、阴极(NH4)2SO4浓度、阳极H2SO4浓度对电沉积效果的影响。结果表明:在阴极Mn2+浓度40 g/L、初始pH=6.9、(NH4)2SO4浓度110 g/L、电流密度400 A/m2,阳极Mn2+浓度40 g/L、H2SO4浓度2.5 mol/L、电流密度800 A/m2,极间距90 mm,电解温度45 ℃,电解时间5 h条件下,阴极电流效率可达77.53%,能耗为6 725.28 kW·h/t,阳极电流效率可达84.87%,能耗为3 883.91 kW·h/t,酸回收率达到63.2%。阴极产品金属锰表面光滑平整,晶粒为块状,呈层状堆积,阳极产物微粒电解二氧化锰颗粒细小,粒径分布均匀,有较规则的晶体形貌。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐祺
王三反
孙百超
关键词:    微粒电解二氧化锰  双膜三室  电流效率  酸回收率    
Abstract: Double-membrane three-chamber electrolysis method was used to electrolyze manganese and particulate electrolytic manganese dioxide in the same tank, and the middle compartment was used to recover sulfuric acid.The effects of Mn2+ concentration, current density, electrolysis temperature, cathode (NH4)2SO4 concentration and anode H2SO4 concentration on electrodeposition were investigated.The results showed that:when the concentration of Mn2+ in the catholyte was 40 g/L, the initial pH is 6.9, the concentration of (NH4)2SO4 in the catholyte was 110 g/L, the cathode current density was 400 A/m2, the concentration of Mn2+ in the anolyte was 40 g/L, and the concentration of H2SO4 in the anolyte was 2.5 mol/L, the anode current density was 800 A/m2, the pole spacing was 90 mm,the electrolysis temperature was 45 ℃, and the electrolysis time was 5 h, the cathode current efficiency reached 77.53%, the energy consumption was 6 725.28 kW·h/t, the anode current efficiency reached 84.87%, the energy consumption was 3 883.91 kW·h/t, and the acid recovery rate reached 63.2%.The surface of manganese metal is smooth and flat, and the grains are blocky and stacked in layers.The particulate electrolytic manganese dioxide particles are fine,the particle size distribution is uniform, and the crystal morphology is relatively regular.
Key words:  manganese    particulate electrolytic manganese dioxide    double-membrane three-chamber    current efficiency    acid recovery
               出版日期:  2020-07-25      发布日期:  2020-07-14
ZTFLH:  TF792  
基金资助: 国家自然科学基金(21466019);兰州交通大学优秀平台基金LZJTU(201606)
作者简介:  徐祺,兰州交通大学环境与市政工程学院硕士研究生,主要研究方向为锰电积的清洁节能技术。
王三反,兰州交通大学教授,博士研究生导师。主要从事环境工程、市政工程、水资源综合利用、重金属回收与资源化利用等方面的教学及科研工作。先后主持完成科研项目30余项,发表相关科研论文140余篇。曾主持完成“绿色膜法金属电积生产技术及设备研究与应用示范”国家科技支撑计划项目。
引用本文:    
徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
XU Qi, WANG Sanfan, SUN Baichao. Control Factors of Electrolytic Manganese and Particulate Electrolytic Manganese Dioxide in Double-membrane Three-chamber Electrolyzer. Materials Reports, 2020, 34(14): 14016-14022.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070057  或          http://www.mater-rep.com/CN/Y2020/V34/I14/14016
1 Zhang D S,Ma Z,Spasova M,et al. Particle & Particle Systems Characte-rization, 2017, 34(3),1.
2 Banerjee A,Ziv B,Luski S,et al. Journal of Power Sources, 2017,341,457.
3 Zeng X B. China's Manganese Industry, 2014, 32(1),1(in Chinese).
曾湘波. 中国锰业, 2014, 32(1), 1.
4 Biswal A,Tripathy B C,Sanjay K. Cheminform, 2015, 72(5),58255.
5 Liu Z H,Sun X G,Pang Z P,et al. Materials Reports B:Research Papers, 2016,30(10),17(in Chinese).
刘珍红,孙晓刚,庞志鹏,等. 材料导报:研究篇, 2016,30(10),17.
6 Luo T S. China's Manganese Industry, 1997(4),40(in Chinese).
罗天盛. 中国锰业, 1997(4),40.
7 Liu R P,Liu H J,Zhao X,et al. Journal of Hazardous Materials, 2010, 176(1-3),926.
8 Niu S S.The study on preparing particle manganese dioxide and LiMn2O4 from manganese anode slag.Master's Thesis,Central South University,China,2012(in Chinese).
牛莎莎.从锰阳极渣制备微粒电解二氧化锰及锰酸锂的研究.硕士学位论文,中南大学,2012.
9 Chen H Q,Niu S S,Wang Z X,et al. Hunan Nonferrous Metals, 2015,31(3),51(in Chinese).
陈海清,牛莎莎,王志兴,等. 湖南有色金属, 2015,31(3),51.
10 Huang Q M,Wang C P,Zhou H,et al. Nonferrous Metals(Extractive Me-tallurgy), 2010(6),6(in Chinese).
黄齐茂,王春平,周红,等. 有色金属(冶炼部分), 2010(6),6.
11 Duan N,Dan Z G,Wang G F,et al. Journal of Cleaner Production, 2011,19(17-18),2082.
12 Li T,Wang S F,Zhou J. Materials Review, 2016,30(S2),432(in Chinese).
李韬,王三反,周键. 材料导报, 2016,30(S2),432.
13 Kazazi M. Ceramics International, 2018, 44(9),10863.
14 Sniekers J, Geysens P, Vander H T, et al. Dalton Transactions, DOI: 10.1039.C8DT00283E.
15 Zheng F,Huang B X,Bi W N,et al. China's Manganese Industry, 2016,34(5),75(in Chinese).
郑凡,黄炳行,闭伟宁,等.中国锰业, 2016,34(5),75.
16 Cai Z Y.Preparation of manganese sulfate by reduction leaching of pyrolusite with crap iron and its electrolytic techniques.Master's Thesis,Hunan University of Science and Technology,China,2012(in Chinese).
蔡振勇. 废铁屑还原浸出软锰矿制备硫酸锰及其电解工艺研究.硕士学位论文,湖南科技大学,2012.
17 Zhang H, Meng H M. Materials Science Forum, 2014, 789,355.
18 Nesvaderani F,Bonakdarpour A,Wilkinson D P. Journal of the Electrochemical Society, 2017,164(4),810.
19 Tang J, Meng H M,He Y F. Journal of Applied Electrochemistry, 2017,47(5),653.
20 Zhang H.Research on production recovery process and pilot test from the amberplex metal electrodeposition technology.Master's Thesis,Lanzhou Jiaotong University,China,2015(in Chinese).
张昊. 离子膜金属电积生产回收技术及中试研究.硕士学位论文,兰州交通大学,2015.
21 Yang W C.The study on manganese electrolytic deposition process and new anode.Master's Thesis,Central South University,China,2013(in Chinese).
杨文翠. 锰电解沉积工艺及新型阳极研究.硕士学位论文,中南大学,2013.
22 Feng Y L,Du Y L,Li H,et al. Hydrometallurgy of China, 2014,33(3),203(in Chinese).
冯雅丽,杜云龙,李辉,等. 湿法冶金, 2014,33(3),203.
23 Yang F,Jiang L X,Yu X Y,et al. The Chinese Journal of Nonferrous Metals, 2018,28(12),2568(in Chinese).
杨凡,蒋良兴,于枭影,等. 中国有色金属学报, 2018,28(12),2568.
24 Hayakawa S,Doihara K,Okita T,et al. Journal of Materials Science, 2019,54(17),11509.
25 Liu X Y, Martinez E, Uberuaga B P. Scientific reports, 2019,9(1),6499.
[1] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[2] 张松, 杨静, 胥永刚, 张明月. 仿SIMA法钎焊对Mn-Cu合金与430不锈钢接头组织及性能的影响[J]. 材料导报, 2020, 34(8): 8126-8130.
[3] 彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
[4] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[5] 黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
[6] 黄慧娟, 尚莉莉, 马建锋, 田根林, 杨淑敏, 刘杏娥. 锰氧化物催化分解室内甲醛的研究进展[J]. 材料导报, 2019, 33(Z2): 521-525.
[7] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[8] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[9] 刘倩, 郑小平, 张荣华, 田亚强, 陈连生. 新型汽车用高强度中锰钢研究现状及发展趋势[J]. 材料导报, 2019, 33(7): 1215-1220.
[10] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[11] 肖罡, 卜晓兵, 杨钦文, 杨旭静, 冯江华. 高锰Hadfield钢单向拉伸变形及断裂行为研究[J]. 材料导报, 2019, 33(22): 3811-3814.
[12] 李灵桐, 臧晓蓓, 曹宁. 锌锰二次电池研究进展[J]. 材料导报, 2019, 33(19): 3210-3218.
[13] 李俊豪,冯斯桐,张圣洁,郑育英,徐建波,党岱,刘全兵. 高性能磷酸锰锂正极材料的研究进展[J]. 材料导报, 2019, 33(17): 2854-2861.
[14] 田亚强, 黎旺, 郑小平, 宋进英, 魏英立, 陈连生. 两相区退火热轧中锰钢碳化物析出行为与组织性能研究[J]. 材料导报, 2019, 33(16): 2765-2770.
[15] 施露, 张杰, 陈蓉, 沈美庆, 单斌. 锰基多元氧化物的NO催化氧化研究进展[J]. 材料导报, 2019, 33(13): 2167-2173.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed