Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6029-6032    https://doi.org/10.11896/cldb.18120030
  无机非金属及其复合材料 |
[BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解
李绘1, 张燕1, 张玉琰1, 宋风娟1, 郦雪1, 王浩宇2, 曹晓强1, 吕宪俊1
1 山东科技大学化学与环境工程学院,青岛 266590;
2 青岛贝宝海洋科技有限公司,青岛 266408
Fabrication of [BMIM][BF4]-MnO2@SS Anode and Removal of Ofloxacin Wastewater
LI Hui1, ZHANG Yan1, ZHANG Yuyan1, SONG Fengjuan1, LI Xue1, WANG Haoyu2, CAO Xiaoqiang1, LYU Xianjun1
1 College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
2 Qingdao Beibao Marine Science & Technology Co., Ltd., Qingdao 266408, China
下载:  全 文 ( PDF ) ( 3274KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 在1-丁基-3-甲基咪唑四氟硼酸盐([BMIM][BF4])的辅助下,通过一步水热法制备了不锈钢基二氧化锰电极([BMIM][BF4]-MnO2@SS),并利用SEM、XRD、电化学工作站对其表面形貌、晶型和电化学特征进行表征。结果表明,BF4可显著提高电极表面的致密性,促进MnO2在不锈钢表面的沉积,同时提高了电极的析氧电位并增强了其电化学活性。以[BMIM][BF4]-MnO2@SS为阳极、抛光不锈钢电极(SS)为阴极,在电压为3V条件下对20mg/L氧氟沙星废水进行电化学降解实验。实验结果表明,降解时间为30min时,氧氟沙星废水去除率可达89.00%,CODCr去除率达到72.56%,同时降解废水能耗降低了51.15%。另外,加速寿命实验表明,[BMIM][BF4]-MnO2@SS电极寿命为MnO2@SS电极的1.90倍,在降解氧氟沙星废水方面展现出优异的性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李绘
张燕
张玉琰
宋风娟
郦雪
王浩宇
曹晓强
吕宪俊
关键词:  二氧化锰  离子液体  不锈钢  氧氟沙星废水    
Abstract: Astainless steel-based manganese dioxide electrode ([BMIM][BF4]-MnO2@SS) was prepared by hydrothermal method with the aid of 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The crystal morphology, structure, and electrochemical performance were characterized by SEM, XRD, electrochemical workstation, respectively. The results show that the addition of BF4 significantly improves the compactness of the electrode surface. It promotes the deposition of MnO2 on the surface of stainless steel, and increases the oxygen evolution potential and electrochemical activity of the electrode. Electrochemical removal experiments were carried out on 20 mg/L ofloxacin wastewater at a vol-tage of 3 V with [BMIM][BF4]-MnO2@SS as the anode and SS electrode as the cathode. The experimental results show that when the reaction time is 30 min, the removal rate of ofloxacin wastewater reaches 89.00%, and the CODCr removal rate reaches 72.56%. At the same time, the energy consumption of degrading ofloxacin was reduced by 51.15%. In addition, the accelerated life test showed that the [BMIM][BF4]-MnO2@SS electrode life is 1.90 times than that of the MnO2@SS electrode, and exhibited excellent performance in degrading the ofloxacin wastewater.
Key words:  MnO2    ionic liquids    stainless steel    ofloxacin wastewater
               出版日期:  2020-03-25      发布日期:  2020-03-12
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51674161);山东省政府公派留学项目
作者简介:  李绘,2016年6月毕业于青岛农业大学,获得理学学士学位。于2016年9月至2019年6月在山东科技大学攻读硕士研究生,研究方向为环境功能材料;张燕,山东科技大学,副教授。2009年毕业于东华大学与澳大利亚联邦科工研究院 (CSIRO),获环境工程博士学位。主要从事环境功能材料和废水处理方面的研究。在国内外重要期刊发表学术文章30余篇,申报发明专利5项。
引用本文:    
李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
LI Hui, ZHANG Yan, ZHANG Yuyan, SONG Fengjuan, LI Xue, WANG Haoyu, CAO Xiaoqiang, LYU Xianjun. Fabrication of [BMIM][BF4]-MnO2@SS Anode and Removal of Ofloxacin Wastewater. Materials Reports, 2020, 34(6): 6029-6032.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18120030  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6029
1 Cao D M, Zuo X, Yuan B Q, et al. Technology of Water Treatment, 2018 (3), 74 (in Chinese).
曹冬梅, 左翔, 袁丙青, 等. 水处理技术, 2018 (3), 74.
2 Kools S A E, Moltmann J F, Knacker T. Regulatory Toxicology & Pharmacology, 2008, 50 (1), 59.
3 Deng L W, Peng Z B, Tang Y, et al. Chinese Journal of Enviromentalence, 1998 (6), 66 (in Chinese).
邓良伟, 彭子碧, 唐一, 等. 环境科学, 1998 (6), 66.
4 Chum H L, Koch V R, Miller L L, et al. Journal of the American Chemical Society, 1975, 97 (11), 3264.
5 Zhang J, Shi Y, Ding Y, et al. Nano Letters, 2016, 16 (11), 7276.
6 Zhao G, Cui X, Liu M, et al. Environmental Science & Technology, 2009, 43 (5), 1480.
7 Dang K, Wang T, Li C C, et al. Engineering, 2017, 3 (3), 285.
8 Zhong C W, Mei W J, Li D, et al. Materials Review B: Research Papers, 2015, 29 (6), 10 (in Chinese).
钟盛文, 梅文捷, 李栋, 等. 材料导报:研究篇, 2015, 29 (6), 10.
9 Lei Y, Zhao G, Zhang Y, et al. Environmental Science & Technology, 2010, 44 (20), 7921.
10 Lin W C, Chen C H, Tang H Y, et al. Applied Catalysis B Environmental, 2013, 140-141 (2), 32.
11 Bao L Y. Electrochemical behavior research of refractory organics in wastewater on insoluble electrode of stainless steel. Beijing University of Chemical Technology, China, 2011 (in Chinese).
鲍立垠. 废水中难降解有机物在不锈钢不溶性电极上电化学行为研究. 博士学位论文, 北京化工大学, 2011.
12 Li T, Li Y M, Liu X L, et al. Materials Review, 2017, 31 (S2), 60 (in Chinese).
李桃, 李艳梅, 刘小林, 等. 材料导报, 2017,31 (专辑30), 60.
13 Sato K. Journal of Physical Chemistry B, 2018, 122 (27), 7009.
14 Earle M J, Seddon K R. Pure & Applied Chemistry, 2000, 72 (7), 1391.
15 Xiao X, Liu S, Liu X, et al. Chinese Journal of Analytical Chemistry, 2005, 33 (4), 569 (in Chinese).
肖小华,刘淑娟,刘霞,等.分析化学,2005, 33 (4), 569.
16 Poole C F. Encyclopedia of Separation Science, 2007, 302 (5646), 1.
17 Yu L, Xue J, Wang L, et al. Rare Metal Materials & Engineering, 2017, 46 (7), 1833.
18 Wang Y, Wu X, Li Y, et al. Solid State Electronics, 2004, 48 (5), 627.
19 Hu B, Chen C, Fang Y, et al. Industrial Water Treatment, 2018 (1), 44 (in Chinese).
胡斌, 陈翠, 方燕, 等. 工业水处理, 2018 (1), 44.
20 Xie R Z, Meng X Y, Sun P, et al. Applied Catalysis B: Environmental, 2017, 203, 515.
21 Radjenovic J, Sedlak D L. Environmental Science & Technology, 2015, 49 (19), 11292.
22 Zhu X P, Ni J R, Wei J J, et al. Journal of Hazardous Materials, 2010, 184 (1-3), 493.
[1] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[2] 刘自刚, 唐海鸿, 刘云华, 陈亮, 陈勇, 陈飞. 不锈钢DP-TIG焊接接头组织与性能[J]. 材料导报, 2020, 34(Z2): 462-464.
[3] 郭潇, 周玉洁, 高静茹, 余薇, 许翠, 韩翠平. 可激活荧光-磁共振双模态纳米材料的制备与性能[J]. 材料导报, 2020, 34(Z1): 97-102.
[4] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[5] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[6] 黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
[7] 陈钢, 鞠娜, 雷玉成, 王丹, 朱强, 李天庆, 陈璐. 430不锈钢在550℃流动Pb-Bi合金中的腐蚀行为[J]. 材料导报, 2020, 34(6): 6105-6108.
[8] 吴文博, 张志明, 王俭秋, 韩恩厚, 柯伟. 热老化316L不锈钢在模拟核电溶解氧/氢高温高压水中应力腐蚀裂纹扩展行为[J]. 材料导报, 2020, 34(6): 6144-6150.
[9] 李福贵, 雷玉成, 李天庆, 朱强, 张雪宁. 奥氏体不锈钢焊接接头辐照偏析和辐照硬化的研究[J]. 材料导报, 2020, 34(4): 4098-4102.
[10] 马潇磊, 张成成, 张朝磊, 马晓艺, 赵海东, 方文. 基于“混杂”设计的索氏体新型不锈钢的组织和性能[J]. 材料导报, 2020, 34(4): 4103-4107.
[11] 杨路, 赵秋莹, 申明霞, 裘进浩. 二氧化锰纤维/聚偏氟乙烯复合材料薄膜的制备及压电性能[J]. 材料导报, 2020, 34(24): 24145-24149.
[12] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[13] 郦雪, 张燕, 张玉琰, 宋凤娟, 赵晓涵, Akanyange Stephen Nyabire, 曹晓强, 吕宪俊. [BMIM]PF6离子液体中GO/CuO/CeO2催化剂的制备及可见光活性[J]. 材料导报, 2020, 34(18): 18019-18024.
[14] 王桂玲, 杜梦宇, 马陈超, 牛星雨, 张卫民, 王欣昱. 超薄二氧化锰@碳纳米球复合材料的制备及电容特性[J]. 材料导报, 2020, 34(16): 16016-16019.
[15] 徐祺, 王三反, 孙百超. 双膜三室同槽电解金属锰和微粒电解二氧化锰的控制因素[J]. 材料导报, 2020, 34(14): 14016-14022.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed