Please wait a minute...
材料导报  2020, Vol. 34 Issue (6): 6010-6014    https://doi.org/10.11896/cldb.19010221
  无机非金属及其复合材料 |
外延掺锰铁酸铋薄膜电容器的光电导和光伏效应
彭增伟1, 刘保亭2
1 华北电力大学科技学院,保定 071051;
2 河北大学物理科学与技术学院,保定 071002
Photoconductivity and Photovoltaic Effect of Epitaxial Mn-doped BiFeO3 Thin Film Capacitor
PENG Zengwei1, LIU Baoting2
1 College of Science and Technology, North China Electric Power University, Baoding 071051, China;
2 College of Physics Science and Technology, Hebei University, Baoding 071002, China
下载:  全 文 ( PDF ) ( 3113KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用射频磁控溅射的方法在SrRuO3/SrTiO3(SRO/STO)衬底上制备了外延Mn掺杂的BiFeO3(BFMO)薄膜,并以Pt/SRO为复合上电极构建了对称的SRO/BFMO/SRO薄膜电容器。X射线衍射揭示了BFMO薄膜具有良好的外延结构。极化-电场滞后回线、净极化强度的测试结果说明外延SRO/BFMO/SRO电容器具有较大的剩余极化强度。波长为404nm、强度为5mW/cm2的紫光入射到SRO/BFMO/SRO电容器表面,电流密度相应增长。当测试电压为+8V,无光和光照时的电流密度分别为0.14A/cm2和0.34A/cm2;当测试电压为-8V,无光和光照时的电流密度分别为0.13A/cm2和0.33A/cm2。通过对电流密度的拟合发现:无光和光照时均为欧姆传导机制,光照并没有改变SRO/BFMO/SRO电容器的传导机制。SRO/BFMO/SRO电容器的光伏效应主要由薄膜内部极化决定。与纯BFO薄膜电容器相比,Mn掺杂增大了光伏输出的短路电流密度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭增伟
刘保亭
关键词:  掺杂    铁酸铋薄膜  光电导  光伏效应    
Abstract: Epitaxial Mn-doped BiFeO3 (BFMO) thin film was directly deposited on SrRuO3 (SRO) buffered (001)-orientation SrTiO3 (STO) substrate by radio frequency magnetron sputtering. Using integrated Pt/SRO to be top electrode to form the symmetric SRO/BFMO/SRO capacitor. X-ray diffraction discovers that BFMO film is of good epitaxial structure. Polarization-electric field hysteresis loops and pulsed polarization show that epitaxial SRO/BFMO/SRO capacitor possesses excellently ferroelectric polarization. The increased leakage current density is acquired when the SRO/BFMO/SRO capacitor is illuminated by the purple light of 5 mW/cm2 with a wavelength of 404 nm. The leakage current density is 0.14 A/cm2 and 0.34 A/cm2 at 8 V without and with illumination, and 0.13 A/cm2 and 0.33 A/cm2 at -8 V without and with illumination, respectively. The ohmic conduction is the dominated leakage mechanism which is not changed by illumination. Photovoltaic effect of the SRO/BFMO/SRO capacitor is mainly controlled by the ferroelectric polarization. Mn doping increases the short circuit current density in photovoltaic effect of the SRO/BFMO/SRO capacitor, compared with that of pure BiFeO3 film capacitor.
Key words:  doping    Mn    BiFeO3 thin film    photoconductivity    photovoltaic effect
                    发布日期:  2020-03-12
ZTFLH:  O484.1  
  O482.7  
基金资助: 中央高校基本科研业务费专项资金(2016MS157);国家自然科学基金(11374086);河北省自然科学基金(A2018201168)
作者简介:  彭增伟,华北电力大学科技学院讲师。2005年河北大学物理学硕士研究生毕业进入华北电力大学科技学院任教,于2009年9月—2013年6月期间在河北大学攻读光学工程专业并获得博士学位。研究方向主要为铁电材料的光电导和光伏特性。作为第一作者在国内外学术期刊上发表论文10余篇,其中SCI收录7篇,EI收录4篇。主持两项中央高校基本科研业务费项目,同时担任Applied Physics Letters, Journal of Applied Physics, Journal of Physics D: Applied Physics, Materials Science in Semiconductor Processing等学术期刊的审稿人。
引用本文:    
彭增伟, 刘保亭. 外延掺锰铁酸铋薄膜电容器的光电导和光伏效应[J]. 材料导报, 2020, 34(6): 6010-6014.
PENG Zengwei, LIU Baoting. Photoconductivity and Photovoltaic Effect of Epitaxial Mn-doped BiFeO3 Thin Film Capacitor. Materials Reports, 2020, 34(6): 6010-6014.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010221  或          http://www.mater-rep.com/CN/Y2020/V34/I6/6010
1 Fu C L. Ferroelectric thin film materials and appications, Science Press, China, 2009 (in Chinese).
符春林. 铁电薄膜材料及其应用,科学出版社, 2009.
2 Fridkin V M, Popov B N. Physica Status Solidi A,1978, 46, 729.
3 Koch W T H, Munser R, Ruppel W, et al. Solid State Communications, 1975, 17, 847.
4 Yang Y S, Lee S J, Yi S, et al. Applied Physics Letters, 2000, 76 (6), 774.
5 Zheng F, Xu J, Fang L, et al. Applied Physics Letters, 2008, 93, 172101.
6 Yao K, Gan B K, Chen M, et al. Applied Physics Letters, 2005, 87, 212906.
7 Basu S R, Martin L W, Chu Y H, et al. Applied Physics Letters, 2008, 92, 091905.
8 Yang S Y, Martin L W, Byrnes S J, et al. Applied Physics Letters, 2009, 95, 062909.
9 Zang Y Y, Xie D, Wu X, et al. Applied Physics Letters, 2011, 99, 132904.
10 Peng Z W, Wang Y L, Liu B T. Materials Science in Semiconductor Processing, 2015, 35, 115.
11 Yang S Y, Seidel J, Byrnes S J, et al. Nature Nanotechnology, 2010, 5, 143.
12 Ji W, Yao K, Liang Y C. Advanced Materials, 2010, 22, 1763.
13 Biswas P P, Chinthakuntla T, Duraisamy D, et al. Applied Physics Letters, 2017, 110, 192906.
14 Guo Y, Guo B, Dong W, et al. Nanotechnology, 2013, 24, 275201.
15 Choi T, Lee S, Choi Y J, et al, Science, 2009, 324, 63.
16 Chen B, Li M, Liu Y W, et al. Nanotechnology, 2011, 22, 195201.
17 Seidel J, Fu D, Yang S Y, et al. Physics Review Letters, 2011, 107, 126805.
18 Yi H T, Choi T, Choi S G, et al. Advanced Materials, 2011, 23, 3403.
19 Gao R L, Yang H W, Chen Y S, et al. Europhysics Letters, 2014, 105, 37008.
20 Katiyar R K, Sharma Y, Misra P, et al. Journal of Applied Physics, 2014, 105, 172904.
21 Gupta S, Tomar M, Gupta V. Journal of Applied Physics, 2014, 115, 014102.
22 Peng Z W, Liu B T. Physics Status Solidi A, 2015, 212 (2), 410.
23 Singh S K, Ishiware H. Applied Physics Letters, 2006, 88, 242908.
24 Aggarwal S, Jenkins I G, Nagaraj B, et al. Applied Physics Letters, 1999, 75, 1787.
25 Angadi M, Auciello O, Krauss A R, et al. Applied Physics Letters, 2000, 77, 2659.
26 Matsuo H, Kitanaka Y, Inoue R, et al. Applied Physics Letters, 2016, 108, 032901.
[1] 李绘, 张燕, 张玉琰, 宋风娟, 郦雪, 王浩宇, 曹晓强, 吕宪俊. [BMIM][BF4]-MnO2@SS阳极的制备及对氧氟沙星废水的降解[J]. 材料导报, 2020, 34(6): 6029-6032.
[2] 黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
[3] 林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
[4] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[5] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[6] 朱广彬, 边志成, 何雨林, 李前进, 郭路路, 罗志虹, 罗鲲. 铁/氮共掺杂石墨烯的制备及氧还原催化活性[J]. 材料导报, 2020, 34(2): 2010-2016.
[7] 袁玖玮, 徐建明, 周罗增, 张玉凤, 张嘉颖, 张晓娟, 周文礼, 彭里其, 徐燕, 高湉. 高温超导块材第二相掺杂的研究进展[J]. 材料导报, 2019, 33(Z2): 65-69.
[8] 王海风, 王若轩, 董云谷, 刘鑫. 溶胶-凝胶法制备Eun+x∶SiO2薄膜及其性能研究[J]. 材料导报, 2019, 33(Z2): 165-168.
[9] 黄慧娟, 尚莉莉, 马建锋, 田根林, 杨淑敏, 刘杏娥. 锰氧化物催化分解室内甲醛的研究进展[J]. 材料导报, 2019, 33(Z2): 521-525.
[10] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[11] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[12] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[13] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[14] 古丽妮尕尔·阿卜来提, 麦合木提·麦麦提, 阿比迪古丽·萨拉木, 买买提热夏提·买买提, 吴赵锋, 孙言飞. Ni 掺杂对BiFeO3薄膜晶体结构和磁性的影响[J]. 材料导报, 2019, 33(z1): 108-111.
[15] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed