Please wait a minute...
材料导报  2020, Vol. 34 Issue (5): 5032-5038    https://doi.org/10.11896/cldb.19050165
  无机非金属及复合材料 |
固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展
林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良
宁波大学海运学院,宁波 315832
Research Progress on Titanium Based Perovskite Anodes for Solid Oxide Fuel Cell (SOFC)
LIN Peijian, MIAO He, WANG Zhouhang, CHEN Bin, WU Xuyang, YUAN Jinliang
Faculty of Maritime and Transportation, Ningbo University, Ningbo 315832, China
下载:  全 文 ( PDF ) ( 2844KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 燃料电池是一种把化学能直接连续转化为电能的高效、环保的发电系统。固体氧化物燃料电池(SOFC)作为第四代燃料电池,其结构为全固态结构,在中高温条件下工作。SOFC具备燃料范围广、材料成本低、使用寿命长、发电效率高、余热利用价值高等优点。
  SOFC阳极为从外界输运过来的燃料与从阴极传递过来的氧离子发生电化学反应提供场所。开发高性价比的阳极是提高SOFC性能、降低其制造成本的关键。SOFC阳极材料包括贵金属、Ni基材料、Cu基材料、钙钛矿等。然而,贵金属阳极受成本制约较为严重,Ni基阳极在使用碳氢燃料时易产生积碳而降低其使用寿命,Cu基阳极的电化学活性较低。钙钛矿阳极因其稳定的结构、较高的抗积碳和耐硫毒化能力而得到广泛关注,近年来各类钙钛矿阳极的报道层出不穷。
  钛基钙钛矿因其较好的催化活性、电化学稳定性、抗硫中毒及抗积碳性能成为近年来SOFC阳极研究的热点。但相较传统Ni基阳极,钛基钙钛矿仍存在催化活性和电导率较低等问题。因此,若将钛基钙钛矿阳极直接应用于SOFC中则无法满足大功率放电需求。近年来,研究者们发现可以采用掺杂、复合改性等方法来提高钛基钙钛矿阳极的电化学活性。
  本文以目前研究较为广泛的La掺杂钛酸锶、Y掺杂钛酸锶和其他体系的钛基钙钛矿作为对象,重点讨论了钛基钙钛矿的改性方法(如掺杂和复合)和研究进展,并给出钛基钙钛矿的发展方向。本文将为高活性、高稳定性SOFC钙钛矿阳极的研究开发提供参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林佩俭
苗鹤
王洲航
陈斌
武旭扬
袁金良
关键词:  固体氧化物燃料电池  阳极  钛基钙钛矿  元素掺杂  原位复合    
Abstract: Fuel cell is an efficient, environmentally friendly power generation system that converts chemical energy directly into electrical energy. The so-lid oxide fuel cell (SOFC) as the fourth generation of the fuel cell with the all-solid-state structure works at medium and high temperature. SOFC exhibits the advantages of wide fuel range, low material cost, long service life, high power generation efficiency and high waste heat utilization value.
  The SOFC anode provides a place for the electrochemical reaction of the fuel transported from the outside and the oxygen ions transported from the cathode. Developing cost-effective anodes is essential to improve SOFC performance and reduce manufacturing costs. The frequently-used SOFC anode materials include precious metals, Ni-based, Cu-based and perovskites. However, precious metal anodes are more severely constrained by cost. Ni-based anodes tend to undergo carbon deposition when using hydrocarbon fuels, and Cu based anodes suffer the lower electrochemical activity. Perovskite anodes have attracted the attention of researchers due to their stable structure and high resistance to carbon de-position as well as sulfur poisoning, a variety of perovskite anodes have been reported in recent years.
  Currently, titanium-based perovskites have become hotspots in SOFC anode research field due to their high catalytic activity, electrochemical stability, anti-sulfur poisoning and carbon deposition resistances. However, comparing with the traditional Ni-based anodes, titanium-based pero-vskites still have some limitations, such as low catalytic activity and electrical conductivity. Therefore, titanium-based perovskite anodes cannot meet the demand for the high-power output of SOFC. Doping and compositing are two prevailing modification methods to prepare titanium-based perovskite anode materials with good electrochemical performance.
  In this paper, the commonly used La-doped strontium titanate, Y-doped strontium titanate and other titanium-based perovskites are outlined and analysed. The modification methods often applied for titanium-based perovskites (such as doping and compounding) are reviewed in detail. The outlooks of the titanium-based perovskites are also presented. This work can give a guideline to develop the titanium-based perovskites with high activity and stability.
Key words:  solid oxide fuel cell    anode    titanium-based perovskite    elemental doping    in-situ compositing
               出版日期:  2020-03-10      发布日期:  2020-01-16
ZTFLH:  TM911  
基金资助: 国家自然科学基金重大研究计划项目(91634102);国家自然科学基金面上项目(51779025);宁波市自然科学基金(2018A610018)
通讯作者:  yuanjinliang@nbu.edu.cn   
作者简介:  林佩俭,2017年毕业于大连海事大学,获得工学学士学位。现为宁波大学海运学院硕士研究生,在袁金良教授的指导下进行研究。目前研究内容为可逆固体氧化物燃料电池燃料极;袁金良,博士,教授。曾任瑞典隆德大学能源科学研究教授。现任宁波大学学术委员会副主任委员、博士研究生导师,兼任英国海洋工程及科技学会会士、教育部海洋工程类指导委员会委员、船舶机电专业委员会副主任委员、省特聘专家、宁波“3315高端创新团队”负责人,世界海事大学和中科院等多所院校兼职教授和博士研究生导师,新能源和传热传质领域重要国际杂志副主编、编委等。研究方向为燃料电池内传递过程与化学反应的耦合研究、电极介观多相传递和相变过程的研究。完成欧盟、瑞典基金及国际合作项目8项。发表SCI论文130余篇,出版专著2部,合著2部。2005年获辽宁省“百千万”人才计划称号,2015年瑞典韦斯特林纪念基金会奖,2016年入选浙江省“千人计划”创新长期类人才称号。
引用本文:    
林佩俭, 苗鹤, 王洲航, 陈斌, 武旭扬, 袁金良. 固体氧化物燃料电池(SOFC)钛基钙钛矿阳极的研究进展[J]. 材料导报, 2020, 34(5): 5032-5038.
LIN Peijian, MIAO He, WANG Zhouhang, CHEN Bin, WU Xuyang, YUAN Jinliang. Research Progress on Titanium Based Perovskite Anodes for Solid Oxide Fuel Cell (SOFC). Materials Reports, 2020, 34(5): 5032-5038.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19050165  或          http://www.mater-rep.com/CN/Y2020/V34/I5/5032
1 Badwal S P S, Foger K. Ceramics International, 1996, 22(3), 257.
2 Atkinson A, Barnett S, Gorte R J, et al. Materials for sustainable energy: a collection of peer-reviewed research and review articles from nature publishing group, World Scientific, UK, 2011, pp.213.
3 Duran P, Tartaj J, Capel F, et al. Journal of the European Ceramic So-ciety, 2004, 24(9), 2619.
4 Kanawka K, Othman M H D, Wu Z, et al. Electrochemistry Communications, 2011, 13(1), 93.
5 Toebes M L, Bitter J H, Van Dillen A J, et al. Catalysis Today, 2002, 76(1), 33.
6 Lay E, Gauthier G, Rosini S, et al. Solid State Ionics, 2008, 179(27), 1562.
7 Miao H, Liu G, Chen T, et al. Journal of Solid State Electrochemistry, 2015, 19(3), 639.
8 Skarmoutsos D, Nikolopoulos P, Tietz F, et al. Solid State Ionics, 2004, 170(3-4), 153.
9 Chang W B. Study of the preparation and performance of the anode material La doped SrTiO3 for solid oxide fuel cell. Master’s Thesis, Harbin Institute of Technology, China, 2015(in Chinese).
常文博. SOFC镧掺杂钛酸锶阳极材料制备及电极性能的研究. 硕士学位论文, 哈尔滨工业大学, 2015.
10 Gao J Q, An S L, Song X W. et al. Materials Review A: Review Papers, 2011,25(12), 9(in Chinese).
郜建全, 安胜利, 宋希文, 等. 材料导报:综述篇, 2011, 25(12), 9.
11 Richter J, Holtappels P, Graule T, et al. Monatshefte für Chemie-Chemical Monthly, 2009, 140(9), 985.
12 Slater P R, Fagg D P, Irvine J T. Journal of Materials Chemistry, 1997, 7(12), 2495.
13 Mukundan R, Brosha E L, Garzon F H. Electrochemical and Solid-State Letters, 2004, 7(1), A5.
14 Burnat D, Heel A, Holzer L, et al. Journal of Power Sources, 2012, 201, 26.
15 Balachandran U, Eror N. Journal of Solid State Chemistry, 1981, 39(3), 351.
16 Xia T. Effect of lanthanum doping on perovskite high-temperature in-situ exsolution and its application in solid oxide cells (SOCs). Master’s Thesis, University of Chinese Academy of Sciences (Shanghai Institute of Ceramics, Chinese Academy of Sciences), China,2018(in Chinese).
夏天. 镧掺杂对钙钛矿高温原位脱溶的影响及其在固体氧化物电池(SOCs)的应用. 硕士学位论文,中国科学院大学 (中国科学院上海硅酸盐研究所), 2018.
17 Kendall K, Kendall M. High-temperature solid oxide fuel cells for the 21st century: Fundamentals, design and applications, Elsevier, UK, 2015.
18 Zhu T L. Structure evolution, mechanism and application of SrFeO3 based perovskite anode.Ph.D. Thesis, China University of Mining, China,2016(in Chinese).
朱腾龙. SrFeO3基钙钛矿阳极结构演化、机理及应用研究. 博士学位论文,中国矿业大学 (北京), 2016.
19 Ruiz-Morales J C, Canales-Vázquez J, Savaniu C, et al. Physical Che-mistry Chemical Physics, 2007, 9(15), 1821.
20 Marina O A, Canfield N L, Stevenson J W. Solid State Ionics, 2002, 149(1-2), 21.
21 Hui S, Petric A. Journal of the Electrochemical Society, 2002, 149(1), J1.
22 Escudero M, Irvine J, Daza L.Journal of Power Sources, 2009, 192(1), 43.
23 Fagg D, Kharton V, Kovalevsky A, et al. Journal of the European Ceramic Society, 2001, 21(10-11), 1831.
24 Du Z, Zhao H, Zhou X, et al. International Journal of Hydrogen Energy, 2013, 38(2), 1068.
25 Li X, Zhao H, Gao F, et al. Electrochemistry Communications, 2008, 10(10), 1567.
26 Miller D N, Irvine J T. Journal of Power Sources, 2011, 196(17), 7323.
27 Li X, Zhao H, Luo D, et al. Materials Letters, 2011, 65(17-18), 2624.
28 Shaula A, Pivak Y, Waerenborgh J, et al. Solid State Ionics, 2006, 177(33-34), 2923.
29 Canales-Vázquez J, Ruiz-Morales J C, Irvine J T, et al. Journal of the Electrochemical Society, 2005, 152(7), A1458.
30 Rath M K, Ahn B-G, Choi B-H, et al. Ceramics International, 2013, 39(6), 6343.
31 Ma W Q. Effect of B-site doping on chemical compatibility of (La0.25-Sr0.75)0.9TiO3-δand stabilized zirconia electrolyte. Master’s Thesis, Northeastern University, China,2015(in Chinese).
马婉青. B位掺杂对(La0.25Sr0.75)0.9TiO3-δ的高温化学稳定性影响机理研究.硕士学位论文,东北大学,2015.
32 Yi F, Li H, Chen H, et al. Ceramics International, 2013, 39(1), 347.
33 Li J, Lv T, Hou N, et al. International Journal of Hydrogen Energy, 2017, 42(34), 22294.
34 Ruiz-Morales J C, Canales-Vázquez J, Savaniu C, et al. Nature, 2006, 439(7076), 568.
35 Nielsen J, Persson H, Sudireddy B R, et al. Journal of Power Sources, 2017, 372, 99.
36 Zhu T, Troiani H E, Mogni L V, et al. Joule, 2018, 2(3), 478.
37 Sun Y F, Zhou X W, Zeng Y, et al. Journal of Materials Chemistry A, 2015, 3(45), 22830.
38 Flores J J A, Rodríguez M L, Espinosa G A, et al. International Journal of Hydrogen Energy, 2019, 44(24),12529.
39 Yao J, Miao H, Wang W G.Materials Review B: Research Papers, 2012,26(2),42(in Chinese).
姚杰,苗鹤,王蔚国.材料导报:研究篇,2012,26(2),42.
40 Ma Q, Tietz F, Stover D. Solid State Ionics, 2011, 192(1), 535.
41 Ma Q, Tietz F, Leonide A, et al. Electrochemistry Communications, 2010, 12(10), 1326.
42 Sun X F, Guo R S, Li J.Chinese Journal of Power Sources,2006(10),842(in Chinese).
孙秀府,郭瑞松,李娟. 电源技术, 2006(10),842.
43 Yoon J S, Yoon M Y, Kwak C, et al. Materials Science and Engineering: B, 2012, 177(2), 151.
44 Tao S, Irvine J T. The Chemical Record, 2004, 4(2), 83.
45 Karczewski J, Riegel B, Gazda M, et al. Journal of Electroceramics, 2010, 24(4), 326.
46 Blennow P, Hagen A, Hansen K K, et al. Solid State Ionics, 2008, 179(35-36), 2047.
47 Smith B H, Holler W C, Gross M D. Solid State Ionics, 2011, 192(1), 383.
48 Madsen B, Kobsiriphat W, Wang Y, et al. Journal of Power Sources, 2007, 166(1), 64.
49 Neagu D, Oh T-S, Miller D N, et al. Nature Communications, 2015, 6, 8120.
50 Yoon H, Jing Z, Sammes N M, et al. International Journal of Hydrogen Energy, 2015, 40(34), 10985.
51 PérillatMerceroz C, Gauthier G, Roussel P, et al. Chemistry of Mate-rials, 2011, 23(6), 1539.
52 Cui S H, Li J H, Zhou X W, et al. Journal of Materials Chemistry A, 2013, 1(34), 9689.
53 Park B H, Choi G M. Solid State Ionics, 2014, 262, 345.
54 Sun X, Wang S, Wang Z, et al. Journal of Power Sources, 2008, 183(1), 114.
55 Savaniu C, Irvine J. Solid State Ionics, 2011, 192(1), 491.
56 Roushanafshar M, Luo J L, Vincent A L, et al. International Journal of Hydrogen Energy, 2012, 37(9), 7762.
57 Fan L, Xiong Y, Liu L, et al. Journal of Power Sources, 2014, 265, 125.
58 Fergus J W. Solid State Ionics, 2006, 177(17-18), 1529.
59 Dong W, Yaqub A, Janjua N K, et al. Electrochimica Acta, 2016, 193, 225.
60 Sun Y F, Li J H, Cui S H, et al. Electrochimica Acta, 2015, 151, 81.
61 Afshar M R, Yan N, Zahiri B, et al. Journal of Power Sources, 2015, 274, 211.
62 Vincent A L, Hanifi A R, Luo J L, et al. Journal of Power Sources, 2012, 215(5), 301.
63 Xu J, Zhou X, Dong X, et al. International Journal of Hydrogen Energy, 2017, 42(23), 15632.
64 Xu J, Zhou X, Pan L, et al. Journal of Power Sources, 2017, 371, 1.
65 Xu J, Zhou X, Cheng J, et al. Electrochimica Acta, 2017, 257, 64.
66 Canales-Vázquez J, Ruiz-Morales J C, Marrero-López D, et al. Journal of Power Sources, 2007, 171(2), 552.
67 Tiwari P K, Basu S. ECS Transactions, 2015, 68(1), 1435.
68 Pillai M R, Kim I, Bierschenk D M, et al. Journal of Power Sources, 2008, 185(2), 1086.
69 Miao H, Chen B, Wu X, et al. International Journal of Hydrogen Energy, 2019, 44(26), 13728.
70 He H, Huang Y, Vohs J M, et al. Solid State Ionics, 2004, 175(1-4), 171.
71 Kim K J, Kim S J, Choi G M. Journal of Power Sources, 2016, 307, 385.
72 Faes A, Nakajo A, Hessler-Wyser A, et al. Journal of Power Sources, 2009, 193(1), 55.
73 Puengjinda P, Muroyama H, Matsui T, et al. Journal of Power Sources, 2012, 204, 67.
74 Kim H S, Yoon S P, Yun J W, et al. International Journal of Hydrogen Energy, 2012, 37(21), 16130.
75 Xiao G, Dong X, Huang K, et al. Materials Research Bulletin, 2011, 46(1), 57.
76 Song Y, Wang W, Qu J, et al. ACS Applied Materials & Interfaces.10(48), 41257.
77 Wang W, Qu J, Zhao B, et al. Journal of Materials Chemistry A, 2015, 3(16), 8545.
[1] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[2] 张英杰,吴昊,曾晓苑,李雪,董鹏,肖杰. 直接碳固体氧化物燃料电池阳极材料的研究进展[J]. 材料导报, 2020, 34(3): 3090-3098.
[3] 程亮, 赵子龙. 用Ti板制备高比表面积TiO2纳米管的响应面实验设计[J]. 材料导报, 2019, 33(Z2): 365-368.
[4] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[5] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[6] 鲁亚稳, 常胜男, 刘元军, 刘皓, 赵晓明, 李晓久. 基于AAO模板的高聚物纳米阵列薄膜的研究进展[J]. 材料导报, 2019, 33(23): 3990-3998.
[7] 周琦, 任向荣. 脱合金化制备纳米多孔Ni、NiO阳极材料及其电催化析氧性能[J]. 材料导报, 2019, 33(22): 3701-3707.
[8] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[9] 钟晓聪, 陈芳会, 王瑞祥, 徐志峰. 硫酸体系铅基阳极稳定性研究进展[J]. 材料导报, 2019, 33(17): 2862-2867.
[10] 于秀玲, 梁雪梅, 李雪. 掺杂不同价态离子的SrFeO3-δ钙钛矿氧化物的电化学性能[J]. 材料导报, 2019, 33(14): 2305-2310.
[11] 闫静, 田晓, 赵宣, 赵丽娟, 杨艳春, 陈均. 储氢合金作为直接硼氢化物燃料电池阳极催化剂的研究进展[J]. 材料导报, 2019, 33(13): 2229-2236.
[12] 吴晓燕, 谭维, 罗才武, 张晓文, 李密, 房琦, 谭文发. 以MnFe2O4为阻挡层的Ni-YSZ阳极支撑SOFC的效能[J]. 材料导报, 2019, 33(12): 1949-1954.
[13] 陈雷行, 苏金瑞, 何豪, 张宗镇, 蔡彬. 质子导体固体氧化物燃料电池的PrBa0.5Sr0.5Cu2O6-δ复合阴极材料[J]. 材料导报, 2019, 33(10): 1615-1618.
[14] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[15] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed