Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (9): 1435-1441    https://doi.org/10.11896/j.issn.1005-023X.2018.09.007
  材料综述 |
绿色电化学法合成金属有机骨架材料的研究现状
魏金枝,王雪亮,孙晓君,张凤鸣
哈尔滨理工大学化学与环境工程学院,哈尔滨 150080
A Methodological Review on Green Electrochemical Synthesis of Metal-Organic Framework Materials
WEI Jinzhi, WANG Xueliang, SUN Xiaojun, ZHANG Fengming
College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin 150080
下载:  全 文 ( PDF ) ( 3677KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机骨架(Metal-organic frameworks,MOFs)材料是一种由金属离子和有机配体通过配位键组装的无机-有机杂化配合物,在气体分离与储存、吸附、催化、载药以及荧光检测等方面都有广泛应用。在诸多合成MOFs材料的方法中,绿色电化学合成法因能耗低、反应条件温和以及反应时间短等特点而成为研究的热点,但目前该方法仍有许多关键问题亟待解决。本文总结了绿色电化学合成MOFs材料近10年的研究进展,综述了包括阳极合成、阴极合成、间接合成、电镀置换等在内的多种合成方法,并展望了未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏金枝
王雪亮
孙晓君
张凤鸣
关键词:  金属有机骨架(MOFs)  电化学  阳极合成  阴极合成  间接合成  电镀置换法    
Abstract: Metal-organic frameworks (MOFs) are a kind of inorganic-organic hybrid complexes assembled by the coordinate bonding of metal ions and organic ligands, and have found wide application in gas separation and storage, adsorption, catalysis, drug delivery and fluorescence detection, etc. Amongst the rich variety of methods to synthesize MOFs, the green electrochemical synthesis has become a hot topic owing to its low energy consumption, mild reaction condition and short reaction time, nevertheless it still faces some key issues. This paper renders a retrospection over the research upon green electrochemical synthesis of MOFs during the past decade, along with a summary of the relevant prevailing methods, including anodic synthesis, cathodic synthesis, indirect synthesis and galvanic displacement. It also contains a prospective outlook for the future research.
Key words:  metal-organic frameworks (MOFs)    electrochemistry    anodic synthesis    cathodic synthesis    indirect synthesis    galvanic displacement
               出版日期:  2018-05-10      发布日期:  2018-07-06
ZTFLH:  O782+.9  
基金资助: 国家自然科学基金(21676066);黑龙江省自然科学基金面上项目(E2016042)
作者简介:  魏金枝:女,博士,副教授,主要从事MOFs材料的电化学制备及其应用和废水的高级氧化法及材料特性的研究 E-mail:weijz0451@163.com
引用本文:    
魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
WEI Jinzhi, WANG Xueliang, SUN Xiaojun, ZHANG Fengming. A Methodological Review on Green Electrochemical Synthesis of Metal-Organic Framework Materials. Materials Reports, 2018, 32(9): 1435-1441.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.09.007  或          http://www.mater-rep.com/CN/Y2018/V32/I9/1435
1 Férey G. Hybrid porous solids: Past, present, future[J].Chemical Society Reviews,2008,37(1):191.
2 Li H, Eddaoudi M, T L G, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC) (BDC=1,4-Benzenedicarboxylate)[J].Journal of the American Chemical Society,1998,120(33):8571.
3 Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J].Chemical Reviews,2012,112(2):724.
4 Bae Y S, Snurr R Q. Development and evaluation of porous mate-rials for carbon dioxide separation and capture[J].Angewandte Chemie International Edition,2011,50(49):11586.
5 Assche T R C V, Duerinck T, Sevillano J J G, et al. High adsorption capacities and two-step adsorption of polar adsorbates on copper-benzene-1,3,5-tricarboxylate metal-organic framework[J].Journal of Physical Chemistry C,2013,117(117):18100.
6 Sachse A, Ameloot R, Coq B, et al. In situ synthesis of Cu-BTC (HKUST-1) in macro-/mesoporous silica monoliths for continuous flow catalysis[J].Chemical Communications,2012,48(39):4749.
7 Murray L J, Dinc M, Long J R. Hydrogen storage in metal-organic frameworks[J].Chemical Society Reviews,2009,38(5):1294.
8 Lv F, Xu L, Zhang Y, et al. Layered double hydroxide assemblies with controllable drug loading capacity and release behavior as well as stabilized layer-by-layer polymer multilayers[J].Applied Materials & Interfaces,2015,7(34):19104.
9 Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the Zn(CN)2 and Cd(CN)2 structures and the synthesis and structure of the diamond-related frameworks[J].Journal of the American Chemical Society,1990,112(4):1199.
10 Kitagawa S, Matsuyama S, Munakata M, et al. Synthesis and crystal structures of novel one-dimensional polymers, [{M(bpen)X∞][M=CuI, X=PF6 ; M=AgI, X=ClO-4; bpen=trans-1,2-bis(2-pyridyl)ethylene] and [{Cu(bpen)(CO)(CH3CN)(PF6)∞][J].Journal of the Chemical Society Dalton Transactions,1991,11(11):2869.
11 Yaghi O M, Li H. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J].Journal of the American Chemical Society,1995,117(41):10401.
12 Gardner G B, Venkataraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network[J].Nature,1995, 374(6525):792.
13 Riou D, Férey G. Hybrid open frameworks (MILn). Part 3 crystal structures of the HT and LT forms of MIL7: A new vanadium propylenediphosphonate with an open-framework. Influence of the synthesis temperature on the oxidation state of vanadium within the same structural type[J].Journal of Materials Chemistry,1998,8(12):2733.
14 Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks[J].Chemical Reviews,2017,112(2):673.
15 Ying Lulu. “Leaves” car into the Expo[J].Today Technology,2010(8):53(in Chinese).
应璐珺.“叶子”汽车驶入世博[J].今日科技,2010(8):53.
16 Sadeghi H. Selective nucleation and growth of metal-organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111)[J].Journal of the American Chemical Society,2005,127(40):13744.
17 Bux H, Liang F, Li Y, et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis[J].Journal of the American Chemical Society,2009,131(44):16000.
18 Pichon A, Lazuengaray A, James S L. Solvent-free synthesis of a microporous metal-organic framework[J].Crystengcomm,2008,8(3):211.
19 Son W J. Sonochemical synthesis of MOF-5[J].Chemical Communications,2009,47(47):6336.
20 Yoo Y, Jeong H K. Rapid fabrication of metal organic framework thin films using microwave-induced thermal deposition[J].Chemical Communications,2008,21:2441.
21 Li W J, Lu J, Gao S Y, et al. Electrochemical preparation of metal-organic framework films for fast detection of nitro explosives[J].Journal of Materials Chemistry A,2014,2(45):19473.
22 Kulp E A, Switzer J A. Electrochemical biomineralization: The deposition of calcite with chiral morphologies[J].Journal of the American Chemical Society,2011,129(49):15120.
23 Furukawa H, Cordova K E, O’Keeffe M, et al. The chemistry and applications of metal-organic frameworks[J].Science,2013,341(6149):1230444.
24 Ameloot R, Pandey L, Van d A M, et al. Patterned film growth of metal-organic frameworks based on galvanic displacement[J].Chemical Communications,2010,46(21):3735.
25 Mueller U, Puetter H, Hesse M, et al. Electrochemical preparation of crystalline, porous, organometallic framework materials, useful e.g. for storage of gases, such as methane for use in fuel cells, with generation of metal ions from an anode in the preparation medium: US, WO20050498922A1[P].2005.
26 Biemmi E, Christian S, Stock N, et al. High-throughput screening of synthesis parameters in the formation of the metal-organic frameworks MOF-5 and HKUST-1[J].Microporous & Mesoporous Materials,2009,117(117):111.
27 Campagnol N, Assche T R C V, Stappers L, et al. On the electrochemical deposition of metal-organic frameworks[J].Journal of Materials Chemistry A,2016,4(10):3914.
28 Sachdeva S, Pustovarenko A, Sudhlter E J, et al. Control of interpenetration of copper-based MOFs on supported surfaces by electrochemical synthesis[J].Crystengcomm,2016,18(22):4018.
29 Buchan I, Ryder M R, Tan J C. Micromechanical behavior of polycrystalline metal-organic framework thin films synthesized by electrochemical reaction[J].Crystal Growth & Design,2015,15(4):1991.
30 Joaristi A M, Juanalcaiz J, Serracrespo P, et al. Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks[J].Crystal Growth & Design,2012,12(7):3489.
31 Assche T R C V, Desmet G, Ameloot R, et al. Electrochemical synthesis of thin HKUST-1 layers on copper mesh[J].Microporous & Mesoporous Materials,2012,158(8):209.
32 Gascon J, Aguado S, Kapteijn F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina[J].Microporous & Mesoporous Materials,2008,113(1):132.
33 Schfer P, Ma V D V, Domke K F. Unraveling a two-step oxidation mechanism in electrochemical Cu-MOF synthesis[J].Chemical Communications,2016,52(25):4722.
34 Ameloot R, Stappers L, Fransaer J, et al. Patterned growth of me-tal-organic framework coatings by electrochemical synthesis[J].Chemistry of Materials,2009,21(13):2580.
35 Cohen S I, Linse S, Luheshi L M, et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism[J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(24):9758.
36 Armand M, Endres F, Macfarlane D R, et al. Ionic-liquid materials for the electrochemical challenges of the future[J].Nature Materials,2009,8(8):621.
37 Kumar R S, Kumar S S, Kulandainathan M A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction[J].Microporous & Mesoporous Materials,2013,168(3):57.
38 Campagnol N, Assche T V, Boudewijns T, et al. High pressure, high temperature electrochemical synthesis of metal-organic frameworks: Films of MIL-100 (Fe) and HKUST-1 in different morpho-logies[J].Journal of Materials Chemistry A,2013,1(19):5827.
39 Yang H M, Song X L, Yang T L, et al. Electrochemical synthesis of flower shaped morphology MOFs in an ionic liquid system and their electrocatalytic application to the hydrogen evolution reaction[J].RSC Advances,2014,4(30):15720.
40 Yang H, Du H, Zhang L, et al. Electrosynthesis and electrochemical mechanism of Zn-based metal-organic frameworks[J].International Journal of Electrochemical Science,2015,10(2):1420.
41 Mueller U, Schubert M, Teiche F, et al. Metal-organic frameworks prospective industrial applications[J].Journal of Materials Chemistry,2006,16(7):626.
42 Stassen I, Styles M, Assche T V, et al. Electrochemical film deposition of the zirconium metal-organic framework UiO-66 and application in a miniaturized sorbent trap[J].Chemistry of Materials,2015,27(5):379.
43 Yadnum S, Roche J, Lebraud E, et al. Site-selective synthesis of janus-type metal-organic framework composites[J].Angewandte Chemie International Edition,2014,53(15):4001.
44 Liu H, Wang H, Chu T, et al. An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution[J].Journal of Materials Chemistry C,2014,2(41):1229.
45 Davydovskaya P, Pohle R, Tawil A, et al. Work function based gas sensing with Cu-BTC metal-organic framework for selective aldehyde detection[J].Sensors & Actuators B Chemical,2013,187(1):142.
46 Yang Q, Xue C, Zhong C, et al. Molecular simulation of separation of CO2, from flue gases in CU-BTC metal-organic framework[J].AICHE Journal,2007,53(11):2832.
47 Marx S, Kleist W, Baiker A. Synthesis, structural properties, and catalytic behavior of Cu-BTC and mixed-linker Cu-BTC-PyDC in the oxidation of benzene derivatives[J].Journal of Catalysis,2011,281(1):76.
48 Khun N W, Mahdi E M, Ying S, et al. Fine-scale tribological performance of zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes[J].APL Materials,2014,2(12):124101.
49 Vandevoorde B, Ameloot R, Stassen I, et al. Mechanical properties of electrochemically synthesised metal-organic framework thin films[J].Journal of Materials Chemistry,2013,1(46):7716.
50 Campagnol N, Souza E R, De Vos D E, et al. Luminescent terbium-containing metal-organic framework films: New approaches for the electrochemical synthesis and application as detectors for explosives[J].Chemical Communications,2014,50(83):12545.
51 Cheng K Y, Wang J C, Lin C Y, et al. Electrochemical synthesis, characterization of Ir-Zn containing coordination polymer, and application in oxygen and glucose sensing[J].Dalton Transactions,2010,43(17):6536.
52 Li M, Dinc M. Reductive electrosynthesis of crystalline metal-organic frameworks[J].Journal of the American Chemical Society,2011,133(33):12926.
53 Kubo M, Chaikittisilp W, Okubo T. Oriented films of porous coordination polymer prepared by repeated in situ crystallization[J].Che-mistry of Materials,2008,20(9):2887.
54 Lu H, Zhu S. Interfacial synthesis of free-standing metal-organic framework membranes[J].European Journal of Inorganic Chemistry,2013,2013(8):1294.
55 Li M M, Dinc M. Selective formation of biphasic thin films of me-tal-organic frameworks by potential-controlled cathodic electrodeposition[J].Chemical Science,2013,5(1):107.
56 Zhu Y M, Zeng C H, Chu T S, et al. A novel highly luminescent LnMOF film: A convenient sensor for Hg2+ detecting[J].Journal of Materials Chemistry A,2013,1(37):11312.
57 Li W J, Feng J F, Lin Z J, et al. Patterned growth of luminescent metal-organic framework films: A versatile electrochemically-assisted microwave deposition method[J].Chemical Communications,2016,52(20):3951.
[1] 封平净, 卢鹏, 刘耀春, 何玉林. 不同nLi/nM值制备富锂锰基正极材料及其电化学性能[J]. 材料导报, 2019, 33(z1): 50-52.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[5] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[6] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[7] 朱佳佳, 黄斌, 李延伟, 陈权启, 李庆奎, 杨建文. 氧化亚锰的制备及储镁电化学性能[J]. 材料导报, 2019, 33(6): 923-926.
[8] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[9] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[10] 王一雍, 周新宇, 金辉, 梁智鹏. 超声辅助电沉积Ni-Co/Y2O3复合镀层的电化学研究[J]. 材料导报, 2019, 33(6): 1011-1016.
[11] 湛 菁, 龙怡宇, 陆二聚, 李启厚, 王志坚. 纤维状多孔钴酸锌的可控制备及电化学性能[J]. 材料导报, 2019, 33(14): 2287-2292.
[12] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[13] 吴子彬, 宋森森, 董安, 杨宗武, 李雪科, 秦克, 张海涛, 班春燕, 李宝绵, 崔建忠, HiromiNagaumi. 铝-空气电池阳极材料及其电解液的研究进展[J]. 材料导报, 2019, 33(1): 135-142.
[14] 陈子冲, 方如意, 梁 初, 甘永平, 张文魁. 锂硫电池硫正极材料研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1401-1411.
[15] 张聪惠,王 婧,宋 薇,王 洋,赵 旭,王耀勉. 高能喷丸处理工业纯钛焊接接头在10%HCl溶液中的腐蚀行为[J]. 《材料导报》期刊社, 2018, 32(9): 1564-1570.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed