Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23100052-5    https://doi.org/10.11896/cldb.23100052
  无机非金属及其复合材料 |
电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响
高娜1, 庞佩琦2, 李智3, 牟国栋3, 崔天成1, 杜贤龙1, 李涛2, 肖国萍1,*
1 中国科学院上海应用物理研究所,中国科学院微观界面物理与探测重点实验室,上海 201800
2 华东理工大学大型工业反应器工程教育部工程中心,上海 200237
3 山东能源集团有限公司大型煤气化及煤基新材料国家工程中心,济南 250000
Study of Process Parameters Effects on Product Distribution of CO2 Electroreduction over Cu-based Catalysts
GAO Na1, PANG Peiqi2, LI Zhi3, MOU Guodong3, CUI Tiancheng1, DU Xianlong1, LI Tao2, XIAO Guoping1,*
1 Key Laboratory of Interfacial Physics and Technology, Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2 Engineering Research Center of Large Scale Reactor Engineering and Technology, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
3 National Engineering Research Center of Coal Gasification and Coal-Based Advanced Materials, Shan Dong Energy Group Co., Ltd.,Jinan 250000, China
下载:  全 文 ( PDF ) ( 4037KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 工业化发展实现生产力飞跃的同时,化石能源的消耗导致大气中二氧化碳(CO2)含量升高,电化学还原CO2(CO2RR)制备高附加值化学品,不仅能解决温室气体带来的问题,还能够缓解能源危机。铜基催化剂是目前用于CO2RR的有效催化剂之一,本研究通过对铜片表面水热处理制备氧化亚铜,将CO2电化学还原为甲酸和一氧化碳,并系统性考察了电解液浓度、CO2压力以及电解液温度对电化学还原产物分布的影响。实验结果发现,电解液浓度降低、CO2压力增加可以抑制析氢反应,电解液温度升高有利于CO的生成。当电解液浓度1 mol/L、温度30 ℃,CO2的压力为55 atm时,在-0.7~-1.2 V (vs.RHE)测试电压范围内,甲酸法拉第效率达70%以上,最高达可到83.6%。当电解液温度由30 ℃升至80 ℃,电压为-0.9 V(vs.RHE)时,甲酸法拉第效率由80%降低到49.7%,CO法拉第效率由4.4%增加到39.2%,表明随着电解液温度升高,甲酸法拉第效率降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高娜
庞佩琦
李智
牟国栋
崔天成
杜贤龙
李涛
肖国萍
关键词:  电化学还原  二氧化碳  铜基催化剂  甲酸  一氧化碳    
Abstract: With industrial thriving development, the consumption of fossil energy has increased the carbon dioxide (CO2) content in the atmosphere, and the preparation of high value-added chemicals by electroreduction of CO2 (CO2RR) not only solves the problems caused by greenhouse gases, but also can alleviate the energy crisis. Copper-based catalyst is one of the effective catalysts currently used for CO2RR. In this work, Cu2O was prepared by hydrothermal treatment of copper sheet surface to CO2RR to formic acid and carbon monoxide, and the effects of electrolyte concentration, CO2 pressure, and electrolyte temperature on the distribution of electrochemical reduction products were systematically investigated. It was found that the decrease of electrolyte concentration and the increase of CO2 pressure could inhibit the hydrogen evolution reaction, and the increase of electrolyte temperature was favorable for the generation of CO. When the electrolyte concentration was 1 mol/L, the temperature was 30 ℃, and the pressure of CO2 was 55 atm, the formic acid Faraday efficiency reached more than 70% and up to 83.6% in the -0.7—-1.2 V (vs. RHE) test voltage range. When the electrolyte temperature increased from 30 ℃ to 80 ℃ at -0.9 V (vs.RHE), the formic acid Faraday efficiency decreases from 80% to 49.7%, while the CO Faraday efficiency increases from 4.4% to 39.2%, which shows that the formic acid Faraday efficiency decreases with the increase of electrolyte temperature.
Key words:  electrochemical reduction    carbon dioxide    copper catalyst    HCOOH    CO
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  TQ150  
基金资助: 山东省重点研发计划(2020CXGC010402);中国科学院上海应用物理研究所育新计划项目(SINAP-YXJH-2022008)
通讯作者:  * 肖国萍,中国科学院上海应用物理研究所正研级高级工程师、博士研究生导师。2006年哈尔滨工程大学化学工程与工艺专业本科毕业,2012年华东理工大学化学工程专业博士毕业后到中国科学院上海应用物理研究所工作至今。目前主要从事二氧化碳电化学还原以及电解水制氢的研究工作。发表论文30余篇,包括IECR、Fuel和Science China Chemistry等。 xiaoguoping@sinap.ac.cn   
作者简介:  高娜,2012年中国石油大学(华东)化学工程与工艺专业本科毕业,2016年石油化工科学研究院工业催化专业硕士研究生毕业。2019年1月入职中国科学院上海应用物理研究所至今,主要从事二氧化碳电化学还原制备高附加值化学品的研究工作。
引用本文:    
高娜, 庞佩琦, 李智, 牟国栋, 崔天成, 杜贤龙, 李涛, 肖国萍. 电解工艺条件对Cu基催化剂电化学还原CO2的产物分布影响[J]. 材料导报, 2024, 38(24): 23100052-5.
GAO Na, PANG Peiqi, LI Zhi, MOU Guodong, CUI Tiancheng, DU Xianlong, LI Tao, XIAO Guoping. Study of Process Parameters Effects on Product Distribution of CO2 Electroreduction over Cu-based Catalysts. Materials Reports, 2024, 38(24): 23100052-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100052  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23100052
1 Ren W, Zhao C. National Science Review, 2020, 7(1), 7.
2 Garg S, Li M, Weber A Z, et al. Journal of Materials Chemistry A, 2020, 8(4), 1511.
3 Birdja Y Y, Pérez-Gallent E, Figueiredo M C, et al. Nature Energy, 2019, 4(9), 732.
4 Masel R I, Liu Z, Yang H, et al. Nature Nanotechnology, 2021, 16(2), 118.
5 Zhu D D, Liu J L, Qiao S Z. Advanced Materials, 2016, 28(18), 3423.
6 Chu S, Majumdar A. Nature, 2012, 488(7411), 294.
7 Qian X, Deng L F, Wang L F, et al. Materials Reports, 2019, 33(21), 102(in Chinese).
钱鑫, 邓丽芳, 王鲁丰, 等. 材料导报, 2019, 33(21), 102.
8 Su W L, Fan Y. Chemical Industry and Engineering Progress, 2021, 40(3), 1384(in Chinese).
苏文礼, 范煜. 化工进展, 2021, 40(3), 1384.
9 Zhang Z W, Guo R T, Qin Y, et al. Materials Reports, 2021, 35(21), 21058(in Chinese).
张中伟, 郭瑞堂, 秦阳, 等. 材料导报, 2021, 35(21), 21058.
10 Varela A S, Kroschel M, Reier T, et al. Catalysis Today, 2016, 260, 8.
11 Lu Q, Jiao F. Nano Energy, 2016, 29, 439.
12 Vickers J W, Alfonso D, Kauffman D R. Energy Technology, 2017, 5(6), 775.
13 Guo C, Zhang T, Deng X, et al. ChemSusChem, 2019, 12(23), 5126.
14 Zhao X, Du L, You B, et al. Catalysis Science and Technology, 2020, 10(9), 2711.
15 Ramdin M, Morrison A R T, De Groen M, et al. Industrial and Engineering Chemistry Research, 2019, 58(5), 1834.
16 Zhang J Y, He T, Wang M, et al. Nano Energy, 2019, 60, 894.
17 Li Z, Li Z Y, Yang Y S, et al. Chemical Industry and Engineering Progress, 2023, 42(1), 53(in Chinese).
李喆, 李泽洋, 杨宇森, 等. 化工进展, 2023, 42(1), 53.
18 Tomboc G M, Choi S, Kwon T, et al. Advanced Materials, 2020, 32(17), 1.
19 Wu M, Zhu C, Wang K, et al. ACS Applied Materials and Interfaces, 2020, 12(10), 11562.
20 Wu S Q, Huang Z A, Li Q C, et al. Materials Reports, 2021, 35(6), 6001(in Chinese).
伍书祺, 黄泽皑, 李晴川, 等. 材料导报, 2021, 35(6), 6001.
21 Wang Q, Huang Z Z, Hu Y C, et al. Materials Reports, 2023, 37(9), 21060091(in Chinese).
王琼, 黄自知, 胡云楚, 等. 材料导报, 2023, 37(9), 21060091.
22 Zhang Q Y, Gao L J, Su Y H, et al. CIESC Journal, 2023, 74(7), 2753(in Chinese).
张琦钰, 高利军, 苏宇航, 等. 化工学报, 2023, 74(7), 2753.
23 Shao X L, Liu Y Y, Yi J, et al. Chinese Journal of Nature, 2020, 42(1), 27 (in Chinese).
邵晓琳, 刘予宇, 易金, 等. 自然杂志, 2020, 42(1), 27.
24 Liu G, Zheng F, Li J, et al. Nature Energy, 2021, 6(12), 1124.
25 Mark C. Biesinger. Surface and Interface Analysis, 2017, 49(13), 1325.
26 Shin H, Hansen K U, Jiao F. Nature Sustainability, 2021, 4(10), 911.
27 Li Z, He D, Yan X, et al. Angewandte Chemie International Edition, 2020, 59(42), 18572.
28 Saha P, Amanullah S, Dey A. Accounts of Chemical Research, 2022, 55(2), 134.
29 Yoo J S, Christensen R, Vegge T, et al. ChemSusChem, 2016, 9(4), 358.
30 Feaster J T, Shi C, Cave E R, et al. ACS Catalysis, 2017, 7(7), 4822.
31 Chen Z, Fan T, Zhang Y Q, et al. Applied Catalysis B: Environmental, 2020, 261, 118243.
32 Chang Z H U, Wei C, Yan-fang S, et al. Journal of Electrochemistry, 2020, 26, 13.
33 Zhu C, Shen G, Chen W, et al. Journal of Power Sources, 2021, 495, 229814.
34 Zhu C, Wang Q, Wu C. Journal of CO2 Utilization, 2020, 36, 96.
35 Li G, Song Y, Zhu C, et al. Journal of CO2 Utilization, 2023, 70, 102446.
36 Zhou Z, Liang S, Xiao J, et al. Journal of Energy Chemistry, 2023, 84, 277.
37 Li J, Kuang Y, Meng Y, et al. Journal of the American Chemical Society, 2020, 142(16), 7276.
[1] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[2] 康成虎. 表面修饰凹凸棒土填充PBT基复合材料的力学性能[J]. 材料导报, 2024, 38(18): 23040289-6.
[3] 程春龙, 陈正, 陈长玖, 柳力晨, 乐启炽. 镁合金表面高温氧化膜CO2矿化处理研究[J]. 材料导报, 2024, 38(16): 23040159-6.
[4] 刘方旺, 王建花, 于明月, 张莉, 张倩, 孟建华, 高庆平, 江津河. 构建多活性位点的单组分金属卤化物@吡啶/咪唑多孔有机框架用于CO2的高效吸收与催化[J]. 材料导报, 2024, 38(15): 23030227-10.
[5] 许丹, 于彩莲, 李芬, 杨莹, 李博琳, 芦柳, 蔺宇晨. CO2还原光催化材料研究进展[J]. 材料导报, 2024, 38(14): 23030280-8.
[6] 高怡萱, 潘杰, 李焰, 张建, 李阳. 超临界二氧化碳输送管道内腐蚀研究进展[J]. 材料导报, 2024, 38(12): 22120216-8.
[7] 平凡, 赵宝艳, 包锦标, 张利. EPDM对VMQ硅橡胶泡沫发泡行为及力学性能的影响[J]. 材料导报, 2023, 37(6): 21080090-5.
[8] 李松琦, 曲家福, 胡俊蝶, 杨晓刚, 李长明. 光热催化二氧化碳还原合成高附加值化学品的研究进展[J]. 材料导报, 2023, 37(22): 22050159-8.
[9] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[10] 黄馨月, 雷小峰, 冯文林, 吴畏, 孙权. 基于金属氧化物敏感材料的一氧化碳传感器研究进展[J]. 材料导报, 2023, 37(15): 21100240-11.
[11] 周美洁, 艾立群, 洪陆阔, 孙彩娇, 周玉青, 孟凡峻. 氢冶金基础研究和新工艺探索[J]. 材料导报, 2023, 37(13): 21080052-6.
[12] 李玉妍, 杨忠鑫, 陈南春, 莫胜鹏, 王秀丽, 解庆林. Zn2+交联海藻酸钠抑菌缓释微球制备及其抑菌效应[J]. 材料导报, 2022, 36(7): 21020040-7.
[13] 李林坤, 刘琦, 黄天勇, 李扬, 彭勃. 基于水泥基材料的CO2矿化封存利用技术综述[J]. 材料导报, 2022, 36(19): 20100295-9.
[14] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 20120056-8.
[15] 朱烨森, 刘梁, 徐云泽, 王晓娜, 刘刚, 黄一. 溶液pH和温度对X65管线钢焊缝非均匀腐蚀的影响[J]. 材料导报, 2022, 36(1): 20090152-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed