Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23100078-8    https://doi.org/10.11896/cldb.23100078
  金属与金属基复合材料 |
GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为
朱凯涛1, 董多2,3,*, 杨晓红4, 朱冬冬2, 王晓红3, 马腾飞3
1 浙江工业大学机械工程学院,杭州 310014
2 台州学院浙江省工量刃具检测与深加工技术研究重点实验室,浙江 台州 318000
3 衢州学院机械工程学院,浙江 衢州 324000
4 金华职业技术学院院士工作站&浙江省农作物收获装备技术重点实验室,浙江 金华 321017
Microstructure, Mechanical Properties and Corrosion Behavior of the GH4169/BNi-7 Brazed Joint
ZHU Kaitao1, DONG Duo2,3,*, YANG Xiaohong4, ZHU Dongdong2, WANG Xiaohong3, MA Tengfei3
1 College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2 Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Taizhou 318000, Zhejiang, China
3 College of Mechanical Engineering, Quzhou University, Quzhou 324000, Zhejiang, China
4 Academician Expert Workstation & Key Laboratory of Crop Harvesting Equipment Technology of Zhejiang Province, Jinhua Polytechnic, Jinhua 321017, Zhejiang, China
下载:  全 文 ( PDF ) ( 6624KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用BNi-7箔带钎料实现了GH4169合金的钎焊连接。钎焊接头可分为扩散影响区(DAZ)、等温凝固区(ISZ)以及非等温凝固区(ASZ)。ISZ主要由镍基固溶体组成;ASZ由γ(Ni)+Ni3P共晶组织和Ni-Cr-P金属间化合物组成。接头典型显微组织为GH4169/γ(Ni)/γ(Ni)+Ni3P+Ni-Cr-P/γ(Ni)/GH4169。在连接过程中,钎焊温度的升高有利于元素的扩散,导致镍基固溶体的体积分数逐渐增加,而脆性相的体积分数逐渐减少,有利于提高接头强度,当钎焊温度为1 020 ℃时,接头具有最高的剪切强度,为161.35 MPa。接头的断裂方式均为脆性断裂,断裂路径位于ASZ。对接头进行电化学测试,ISZ作为阳极并产生明显的腐蚀沟槽,而基体和ASZ作为阴极被保护。相比于母材,焊接后接头的耐腐蚀性能和钝化膜稳定性均明显降低。钎焊温度的升高导致抗腐蚀元素Cr、Mo的扩散更充分,接头的组织更均匀,因此提升了接头的耐腐蚀性能及钝化膜的稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱凯涛
董多
杨晓红
朱冬冬
王晓红
马腾飞
关键词:  真空钎焊  镍基合金  BNi-7  剪切强度  腐蚀行为    
Abstract: In this work, GH4169 alloy was brazed by BNi-7 filler foil. The brazed joint consists of three zones: diffusion affected zone (DAZ), athermal solidification zone (ASZ) and isothermal solidification zone (ISZ). ISZ is mainly composed of Ni-based solid solution; ASZ is composed of both γ(Ni)+Ni3P eutectic structure and Ni-Cr-P intermetallic compounds. The typical microstructure of the GH4169 alloy joint brazed at 980 ℃ is GH4169/γ(Ni)/γ(Ni)+Ni3P+Ni-Cr-P/γ(Ni)/GH4169. During the brazing process, the increasing of the brazing temperature was beneficial to the diffusion of elements, which should promote the volume fraction of Ni-based solid solution and decrease that of brittle phases, and then improved the shear strength of brazed joints. When the brazing temperature was 1 020 ℃, the highest shear strength (161.35 MPa) was obtained. The fracture mode of the joint was brittle fracture, and the fracture occurred in ASZ. The electrochemical tests of joints were conducted. ISZ acted as an anode and created noticeable corrosion trenches, and the substrate and ASZ were protected as cathodes. Compared with the base metal, the corrosion resistance and the stability of the passive film of the brazed joints were reduced. The increase of the brazing temperature led to a full diffusion of anti-corrosion elements such as Cr and Mo, and a more uniform microstructure of the joint, thus improving the corrosion resistance of the joint and the stability of the passive film.
Key words:  vacuum brazing    Ni-based alloy    BNi-7    shear strength    corrosion behavior
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  V261.3+4  
基金资助: 国家自然科学基金(52071165)
通讯作者:  * 董多,衢州学院机械工程学院副教授、硕士研究生导师。博士毕业于北京科技大学,目前主要从事钎焊理论与应用的研究工作。 dongduohit@163.com   
作者简介:  朱凯涛,2021年6月于台州学院获得工学学士学位。现为浙江工业大学机械工程学院硕士研究生,在董多副教授的指导下进行研究。目前主要研究领域为钎焊。
引用本文:    
朱凯涛, 董多, 杨晓红, 朱冬冬, 王晓红, 马腾飞. GH4169/BNi-7钎焊接头的显微组织、力学性能和腐蚀行为[J]. 材料导报, 2024, 38(24): 23100078-8.
ZHU Kaitao, DONG Duo, YANG Xiaohong, ZHU Dongdong, WANG Xiaohong, MA Tengfei. Microstructure, Mechanical Properties and Corrosion Behavior of the GH4169/BNi-7 Brazed Joint. Materials Reports, 2024, 38(24): 23100078-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23100078  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23100078
1 Zhao Y S, Zhang M, Dai J W, et al. Materials Reports, 2023, 37(6), 77 (in Chinese).
赵云松, 张迈, 戴建伟, 等. 材料导报, 2023, 37(6), 77.
2 Wang K, Zhang P, Yang W P, et al. Journal of Rocket Propulsion, 2023, 49(1), 12 (in Chinese).
王凯, 张鹏, 杨卫鹏, 等. 火箭推进, 2023, 49(1), 12.
3 Riedlsperger F, Wojcik T, Buzolin R, et al. Materials Characterization, 2023, 198, 112720.
4 Jiang H, Wang F, Dong J X. Journal of Materials Research and Technology, 2023, 23, 4860.
5 Zhao X B, Gu Y F, Lu J T, et al. Rare Metal Materials and Engineering, 2015, 44(3), 768 (in Chinese).
赵新宝, 谷月峰, 鲁金涛, 等. 稀有金属材料与工程, 2015, 44(3), 768.
6 Shi C X, Zhong Z Y. Acta Metallurgica Sinica, 2010, 46(11), 1281 (in Chinese).
师昌绪, 仲增墉. 金属学报, 2010, 46(11), 1281.
7 Yan G X, Bhowmik A, Nagarajan B, et al. Materials Science and Engineering: A, 2019, 766, 138267.
8 Zorc B, Kosec L. Revista de Metalurgia (Madrid), 2000, 36, 100.
9 Salmaliyan M, Shamanian M. Heat and Mass Transfer, 2019, 55, 2083.
10 Li H Y, Liu Y J, Zhao Z X, et al. Acta Aeronaut et Astronautica Sinica, 2022, 43(2), 625020 (in Chinese).
李昊岳, 刘永江, 赵振兴, 等. 航空学报, 2022, 43(2), 625020.
11 Tan C W. Research on laser welding-brazing characteristics of magne-sium/steel and its interface control with alloying elements. Ph. D. Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
檀财旺. 镁/钢激光熔钎焊接特性及界面合金调控技术研究. 博士学位论文, 哈尔滨工业大学, 2014.
12 Khan Z, Fida S, Nisar F, et al. Engineering Failure Analysis, 2016, 68, 197.
13 Zhang H Y, Xu W, Zhu T Y, et al. Engineering Failure Analysis, 2023, 146, 107150.
14 Lian Z J, Niu J, Xu D X, et al. Journal of Netshape Forming Engineering, 2020, 12(1), 60 (in Chinese).
廉张剑, 牛靖, 徐东晓, 等. 精密成形工程, 2020, 12(1), 60.
15 Pagotto J F, Montemor M F, Recio F J, et al. Journal of the Brazilian Chemical Society, 2015, 26(4), 667.
16 Andreatta F, Matesanz L, Akita A H, et al. Electrochimica Acta, 2009, 55, 551.
17 Benedetti A, Gambaro S, Valebza F, et al. Electrochimica Acta, 2018, 283, 155.
18 Yang L Y, Dong X P, Liu W, et al. Corrosion Science and Protection Technology, 2009, 21(1), 40 (in Chinese).
杨丽颖, 董小平, 柳伟, 等. 腐蚀科学与防护技术, 2009, 21(1), 40.
19 Qin Y Q, Jiang W X. Welding in the World, 2019, 63, 1469.
20 Tan J F, Wan M, Han W W, et al. Intermetallics, 2022, 141, 107438.
21 Liu S B, Shohji I, Kobayashi T, et al. Materials, 2021, 14(15), 4216.
22 Hu S P, Li W Q, Fu W, et al. Acta Aeronaut et Astronautica Sinica, 2021, 42(3), 423846 (in Chinese).
胡胜鹏, 李文强, 付伟, 等. 航空学报, 2021, 42(3), 423846.
23 Yan G X, Bhowmik A, Nagarajan B, et al. Applied Surface Science, 2019, 484, 1223.
24 Ghahferokhi A I, Kasiri-Asgarani M, Ebrahimi-Kahrizsangi R, et al. Journal of Materials Research and Technology, 2022, 21, 2178.
25 Pouranvari M, Ekrami A, Kokabi A H. Journal of Alloys and Compounds, 2013, 563, 143.
26 Binesh B, Gharehbagh A J. Journal of Materials Science & Technology, 2016, 32(11), 1137.
27 Doroudi A, Shamsipur A, Omidvar H, et al. Journal of Manufacturing Processes, 2019, 38, 235.
28 Otto J L, Penyaz M, Schmied K A, et al. Journal of Materials Research and Technology, 2020, 9(5), 10550.
29 Wu N, Li Y J, Wang J, et al. Journal of Materials Processing Technology, 2012, 212(4), 794.
30 Baharzadeh E, Shamanian M, Rafiei M, et al. Journal of Materials Processing Technology, 2019, 274, 116297.
31 Chen Z L, Chen G Q, Li J, et al. Hot Working Technology, 2008(5), 16 (in Chinese).
陈志林, 陈国强, 李军, 等. 热加工工艺, 2008(5), 16.
32 Guo S, Sun L B, Zheng Z, et al. Electrochimica Acta, 2021, 379, 138193.
33 Chen G L, Liu S S, Wu D T, et al. Materials Reports, 2023, 37(7), 168 (in Chinese).
赵冠琳, 刘树帅, 吴东亭, 等. 材料导报, 2023, 37(7), 168.
34 Dezfooli M S, Shamanian M, Golozar M A. Journal of Manufacturing Processes, 2021, 64, 464.
35 Wang X J, Li M Z, Wang B S, et al. Hot Working Technology, 2019, 48(22), 70 (in Chinese).
王希靖, 李梦泽, 王博士, 等. 热加工工艺, 2019, 48(22), 70.
36 Shi Y Z. Microstructures and corrosion-resistant properties of AlxCoCrFeNi high-entropy alloys. Ph. D. Thesis, University of Science and Technology Beijing, China, 2018 (in Chinese).
石芸竹. AlxCoCrFeNi系高熵合金微观组织与耐蚀性能研究. 博士学位论文, 北京科技大学, 2018.
37 Raj S, Biswas P. Journal of Manufacturing Processes, 2023, 95, 143.
38 Zhang J W, Wang W X, Huang Y P, et al. Transactions of the China Welding Institution, 2007, 28(2), 103 (in Chinese).
张俊旺, 王文先, 黄延平, 等. 焊接学报, 2007, 28(2), 103.
39 Choi K J, Yoo S C, Kim S, et al. Corrosion Science, 2019, 153, 138.
40 Chen X D, Yu W Y, Lu W J, et al. Transactions of the China Welding Institution, 1999(S1), 10 (in Chinese).
陈学定, 俞伟元, 路文江, 等. 焊接学报, 1999(S1), 10.
[1] 赵永福, 唐敏, 姜峨, 银朝晖, 陈子瑞, 张根, 吴宗佩, 李杨. 氨型碱性水化学对690TT腐蚀特性的影响[J]. 材料导报, 2024, 38(7): 23030048-6.
[2] 仵金玲, 刘思雨, 张彪, 魏智磊, 史忠旗. 连接温度对W/Ni/Kovar真空扩散连接接头界面结构及结合强度的影响[J]. 材料导报, 2024, 38(4): 22090302-6.
[3] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[4] 韩秋丽, 安士忠, 宋克兴, 刘海涛, 周延军, 程楚, 张彦敏. 海洋工程用铜镍合金的腐蚀与防护研究进展[J]. 材料导报, 2024, 38(18): 23020095-8.
[5] 丁茜, 李海波, 廖俊生. 铀及铀铌合金在潮湿气氛中的腐蚀行为研究进展[J]. 材料导报, 2024, 38(12): 23030113-11.
[6] 陈思雨, 张弦, 李腾, 刘静, 吴开明. 危废处理超临界水氧化环境中装置材料腐蚀的研究进展[J]. 材料导报, 2023, 37(8): 21100176-7.
[7] 蔡达, 王立世, 胡心彬. AA5052铝合金/AZ31B镁合金搅拌摩擦焊接头的腐蚀行为研究[J]. 材料导报, 2023, 37(4): 21040318-7.
[8] 张路, 牛荻涛, 文波, 张永利, 陈昊. 改性珊瑚骨料混凝土中钢筋的腐蚀行为[J]. 材料导报, 2022, 36(6): 20110005-7.
[9] 蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
[10] 徐秀清, 王玮, 陈之腾, 李云, 胡海军. 加氢换热器用321不锈钢、镍基合金825氢脆敏感性研究[J]. 材料导报, 2022, 36(14): 21030183-6.
[11] 王晓昱, 贾建刚, 刘第强, 巨佳康, 柴昌盛, 季根顺. 基于Si-CaO/Al2O3-Si三明治结构的碳/碳复合材料高强度扩散连接[J]. 材料导报, 2022, 36(13): 21040028-6.
[12] 唐紫苑, 张淑婷, 杜开平, 宣鹏举, 司丽娜. 包埋渗技术在镍基高温合金中的应用[J]. 材料导报, 2021, 35(Z1): 389-394.
[13] 钟诗宇, 张丁非, 胥钧耀, 赵阳, 冯靖凯, 蒋斌, 潘复生, 杨静波. 含Gd的Mg-Al系合金研究现状[J]. 材料导报, 2021, 35(9): 9016-9027.
[14] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[15] 初铭强, 丁仁根, 张书彦, 郑江鹏, 张楠. 航空零部件加工表面完整性[J]. 材料导报, 2021, 35(7): 7183-7189.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed