Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20090283-5    https://doi.org/10.11896/cldb.20090283
  无机非金属及其复合材料 |
Nb对Zr基钎料及钎焊连接SiC陶瓷的影响
蔡雨晨1, 冯可芹1, 周博芳1,2, 陈思潭1
1 四川大学机械工程学院,成都 610065
2 湖北汽车工业学院材料科学与工程学院,湖北 十堰 442002
Effect of Nb on Zr-based Filler and Brazing SiC Ceramics
CAI Yuchen1, FENG Keqin1, ZHOU Bofang1,2, CHEN Sitan1
1 School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
2 School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002,Hubei,China
下载:  全 文 ( PDF ) ( 11026KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 研究在Zr-20Cu钎料基础上添加元素Nb对钎料及SiC陶瓷钎焊接头微观结构和力学性能的影响。结果表明:添加Nb后钎料的相组成物主要是α-Zr、β-Zr、β-Nb和CuZr2,且随着Nb含量增加,晶界处的大尺寸第二相CuZr2不断减少,从而提高了钎料的耐腐蚀性;添加Nb钎料可有效地填充SiC陶瓷之间的间隙,且钎焊接头中无孔隙和裂缝;钎焊接头处形成了一定厚度的界面反应层,生成物质主要有ZrC、Zr2Si、Nb2C和Nb5Si3;Nb2C和Nb5Si3可降低钎焊接头的脆性,其与Nb的固溶强化共同作用,提高了接头的剪切强度。当Nb含量较低时,SiC陶瓷接头的剪切强度随Nb含量(0%~10%,质量分数,下同)的增加而提高,其中Nb含量为10%时,接头断口处存在大量韧窝,接头强度达到最大值(86 MPa);但当Nb含量继续增加到15%时,由于Nb过量导致钎料熔点升高,使得接头剪切强度有所降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡雨晨
冯可芹
周博芳
陈思潭
关键词:  碳化硅陶瓷  锆铜铌钎料  钎焊  微观结构  剪切强度    
Abstract: The effect of Nb addition in Zr-20Cu filler metal on the microstructure and properties of the filler metal and SiC ceramic brazing joints was studied. The results show that adding Nb to the brazing filler metal can obtain a good joint. The filler metal is composed of α-Zr, β-Zr, β-Nb, and CuZr2. Among them, CuZr2 decreases as Nb increases, thereby improving the corrosion resistance of the filler metal. Moreover, the filler metal can fill the gap between SiC ceramics without pores and cracks. After brazing, an interface reaction layer forms at the joint which mainly contains ZrC, Zr2Si, Nb2C and Nb5Si3. In addition, Nb2C and Nb5Si3 can reduce the brittleness of joints which work together with the solid solution strengthening of Nb to improve the shear strength of the joint. When the Nb content is between 0% and 10%, the shear strength heightens with the increase of Nb content. And it reaches the maximum when the Nb content is 10%, which is approximately 86 MPa. At the same time, a large number of dimples generate at the fracture. However, when the Nb content is added to 15%, the melting point of the filler metal increases, which makes the shear strength decline.
Key words:  sillicon carbide ceramic    zirconium-copper-niobium filler metal    brazing    microstructure    shear strength
发布日期:  2022-02-10
ZTFLH:  TG454  
基金资助: 四川省科技计划项目(2019YFG0225)
通讯作者:  kqfeng@scu.edu.cn   
作者简介:  蔡雨晨,四川大学,硕士研究生。目前主要研究方向为碳化硅陶瓷的钎焊连接。
冯可芹,四川大学,教授,博士研究生导师。主要从事金属-陶瓷复合材料、钒钛资源综合利用、外场辅助材料的合成与制备、材料制备和冶金过程的物理化学等方面的研究。先后在国内外核心学术期刊上发表学术论文140余篇,其中SCI收录53篇,EI收录82篇。
引用本文:    
蔡雨晨, 冯可芹, 周博芳, 陈思潭. Nb对Zr基钎料及钎焊连接SiC陶瓷的影响[J]. 材料导报, 2022, 36(3): 20090283-5.
CAI Yuchen, FENG Keqin, ZHOU Bofang, CHEN Sitan. Effect of Nb on Zr-based Filler and Brazing SiC Ceramics. Materials Reports, 2022, 36(3): 20090283-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090283  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20090283
1 Liu J K, Zhang X H, Yun Di. Materials Reports A:Review Papers, 2018, 32(6), 1757 (in Chinese).
刘俊凯, 张新虎, 恽迪. 材料导报:综述篇, 2018, 32(6),1757.
2 Koyanagi T, Katoh Y, Nozawa T, et al. Journal of Nuclear Materials, 2018, 511,544.
3 Chen M W, Xie W J, Qiu H P, et al. Advanced Ceramics, 2016, 37,393.
4 Xiao J, Zhang Z Z, Shen W, et al. Bulletin of the Chinese Ceramic Society, 2017, 36(5),1623 (in Chinese).
肖杰, 张贞贞, 沈伟, 等. 硅酸盐通报, 2017, 36(5), 1623.
5 Wang Q, Li Q H, Sun D L, et al. Rare Metal Materials and Engineering, 2016, 45(7),1749 (in Chinese).
王清, 李其海, 孙东立, 等. 稀有金属材料与工程, 2016, 45(7),1749.
6 Yu Y D, Dong H Y, Ma B L, et al. Journal of Alloys & Compounds, 2017, 708,373.
7 Zhong Z H, Hou G X, Zhu Z X, et al. Ceramics International, 2018, 44(10),11862.
8 Chen J, Dong S M, Zhang X Y, et al. International Journal of Applied Ceramic Technology, 2015, 12,E197.
9 Zhao Y X, Yu J B, Du Z Y, et al. Journal of Hebei University of Science and Technology, 2015, 36(4),368 (in Chinese).
赵一璇, 于静泊, 杜正勇, 等. 河北科技大学学报, 2015, 36(4),368.
10 Yang H, Zhou X, Shi W, et al. Journal of the European Ceramic Society, 2017, 37(4),1233.
11 Tian W B, Sun Z M, Zhang P, et al. Journal of the Australian Ceramic Society, 2017, 53(4),1.
12 Zhou B F, Feng K Q. RSC Adavances, 2018, 8, 26251.
13 Zhou B F, Wang J F, Feng K Q, et al. Crystals, 2020,10(93), 1.
14 Liu E W, Zhang X Y, Chen J W, et al. Rare Metal Materials and Engineering, 2012, 41(11),2010 (in Chinese).
刘二伟, 张喜燕, 陈建伟, 等. 稀有金属材料与工程, 2012, 41(11),2010.
15 Bao Y C, Zhang L F, Zhu F W. Corrosion Science and Protection Techno-logy, 2013, 25(5),398 (in Chinese).
鲍一晨, 张乐福, 朱发文.腐蚀科学与防护技术, 2013, 25(5),398.
16 Guo Q W, Wang G S, Guo G C. Changyong youse jinshu eryuanhejin xiangtuji. Chemical Industry Press, 2009 (in Chinese).
郭青蔚, 王桂生, 郭庚辰. 常用有色金属二元合金相图集. 化学工业出版社,2009.
17 Park J Y, Choi B K, Yoo S J, et al. Journal of Nuclear Materials, 2006, 359,59.
18 Jeongy H, Kim H G, Kim T H. Journal of Nuclear Materials, 2003, 317(1),1.
19 Shang X K. Research on precipitates evolution and solubility extension in Cu-Mo and Cu-Nb immiscible alloys with large positive heat of mixing. Ph.D. Thesis, University of Science and Technology Beijing,China, 2020 (in Chinese).
商雪坤. 高正混合焓Cu-Mo和Cu-Nb非互溶合金析出相演化及元素固溶行为研究. 博士学位论文, 北京科技大学, 2020.
20 Bai G H, Wang R S, Zhang Y W, et al. Total Corrosion Control, 2016,30(1),78(in Chinese).
柏广海,王荣山,张晏玮,等. 全面腐蚀控制, 2016, 30(1),78.
21 Feng G J, Li Z R, Zhu H Y, et al. Journal of Materials and Engineering, 2015, 43(1),1(in Chinese).
冯广杰, 李卓然, 朱洪羽, 等.材料工程, 2015, 43(1),1.
22 Li W W, Chen B, Xiong H P, et al. Welding in the World,2017,61(4),839.
23 Wang W L, Fan D Y, Huang J H, et al. Transactions of the China Welding Institution, 2016, 37(12),13(in Chinese).
王万里, 范东宇, 黄继华, 等. 焊接学报, 2016, 37(12),13.
24 Wu L L. Microstructure and properties of tungsten, niobium and vanadium infinite chill cast iron, and mechanical properties of their carbides. Ph.D. Thesis, Yanshan University,China, 2013 (in Chinese).
吴来磊. 钨铌钒无限冷硬铸铁组织与性能及碳化物的力学特性. 博士学位论文, 燕山大学, 2013.
25 Guo F D. The research on structure and thermal properties of Zr-In, Zr-Si and Zr-Cu intermetallic compounds: a first principle calculations. Master's Thesis, Guangxi University,China, 2018 (in Chinese).
郭付达. Zr-In、Zr-Si和Zr-Cu金属间化合物结构与性能的第一性原理研究.硕士学位论文, 广西大学, 2018.
26 Sun X W. The study of composition design and performance of ZrxNb(1-x)C and ZrCxN(1-x) alloys. Master's Thesis, Yanshan University, China, 2013 (in Chinese).
孙晓玮. ZrxNb(1-x)C和ZrCxN(1-x)合金的成分设计与性能研究. 硕士学位论文, 燕山大学, 2013.
27 Yu L Q. Study on relationship between microstructure and properties of high zirconiumniobium alloy. Master's Thesis, Xi'an Shiyou University,China, 2015 (in Chinese).
于乐庆. 高锆铌合金组织与性能关系研究. 硕士学位论文, 西安石油大学, 2015.
[1] 庞华, 辛勇, 岳慧芳, 彭航, 蒲曾坪, 邱玺, 孙志鹏, 刘仕超. 大晶粒UO2燃料芯块性能研究进展[J]. 材料导报, 2022, 36(4): 22010197-8.
[2] 范青杰, 杨子健, 赖仕全, 岳莉, 朱亚明, 赵雪飞. 喹啉沥青的合成及其富氮衍生炭的微观结构研究[J]. 材料导报, 2022, 36(4): 20120072-6.
[3] 吴建东, 郭丽萍, 曹园章, 费香鹏. 超高性能混凝土早期600 ℃抗爆裂性能研究[J]. 材料导报, 2022, 36(3): 20110163-6.
[4] 杨旭东, 刘冠甫, 胡琪, 邹田春, 沙军威, 纵荣荣. 泡沫铝疲劳性能研究进展[J]. 材料导报, 2022, 36(2): 20030052-5.
[5] 张玉宝, 李志刚, 王艺, 蒋继成, 姚钢, 赵弘韬. 工作气压对磁控溅射TaN薄膜微结构和性能的影响[J]. 材料导报, 2021, 35(z2): 60-63.
[6] 杨柯楠, 金珊珊. 水泥乳化沥青砂浆性能研究现状[J]. 材料导报, 2021, 35(z2): 145-149.
[7] 廖明义, 王文恒, 王旭, 张春庆. 无规溶聚苯乙烯/丁二烯橡胶的负离子法合成、微观结构和性能[J]. 材料导报, 2021, 35(z2): 465-469.
[8] 戴宗妙, 彭雪峰, 刘喜宗, 吴恒. 铺层方式对碳纤维预浸料不同温度下压缩特性的影响[J]. 材料导报, 2021, 35(z2): 564-569.
[9] 唐杰, 杨勇, 黄政仁. 碳化硅陶瓷浆料基3D打印研究进展[J]. 材料导报, 2021, 35(Z1): 172-179.
[10] 石妍, 李家正, 李杨, 韩炜. 混凝土表面热喷涂陶瓷防护涂层的可行性试验研究[J]. 材料导报, 2021, 35(Z1): 238-241.
[11] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[12] 姚刚, 刘衍腾, 邓云华, 续润洲, 赵伟. 钛合金蜂窝壁板楔形件静强度测试及失效模式分析[J]. 材料导报, 2021, 35(Z1): 367-370.
[13] 倪航天, 黄煜镔. 固化土微观测试评价方法述评[J]. 材料导报, 2021, 35(9): 9168-9173.
[14] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[15] 鲁发章, 刘海韬, 黄文质. 8YSZ-Al2O3复合热障涂层研究进展[J]. 材料导报, 2021, 35(7): 7042-7047.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed