Please wait a minute...
材料导报  2022, Vol. 36 Issue (3): 20100091-9    https://doi.org/10.11896/cldb.20100091
  高分子与聚合物基复合材料 |
日间辐射制冷材料研究进展
万中伊欣, 刘东青, 余金山
国防科技大学空天科学学院 ,新型陶瓷纤维及其复合材料重点实验室,长沙410073
Research Progress of Daytime Radiative Cooling Materials
WAN Zhongyixin, LIU Dongqing, YU Jinshan
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 14275KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 辐射制冷是一种备受关注的新型降温方式,该方式利用大气透明窗口(ATW)向外太空辐射传热,实现被动降温。一般日间辐射制冷材料应在8~13 μm波段内具有高发射率,在太阳光谱波段吸收率低于5%。辐射制冷研究可以绿色低耗的方式为建筑节能、服饰降温、冷藏冷凝、电池降温等提供方案,有着广阔的应用前景。
如何使辐射材料较好地匹配理想辐射光谱是目前最主要的问题。近年来研究者多从辐射材料结构入手,在提高8~13 μm窗口波段发射率的同时,通过构建具备光子带隙或发生Mie散射的结构等方式,减少太阳辐射吸收,并取得了显著成果。
通过高聚物掺杂纳米粒子、不同折射率材料堆叠等结构设计,使辐射制冷材料的红外选择性得到了显著提升。一些高聚物在8~13 μm波段内具有高发射率,同时可有效隔绝体系外的热量输入。将高聚物与发射光谱互补的掺杂纳米粒子相结合,可覆盖整个目标波段,提高其制冷性能。层堆叠模式参考了光子晶体阻断特定波长电磁波传播的特性,设计了不同折射率层交替排列,在不影响高发射层向外辐射红外能量的同时降低了材料对太阳光的吸收。
本文主要综述了近年日间辐射制冷材料的研究进展,按其结构形态,将前沿辐射制冷材料分为薄膜类、涂层类、织物类和块材类,并阐述了辐射制冷器在建筑、电池降温等方面的实际应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万中伊欣
刘东青
余金山
关键词:  辐射制冷  选择性辐射  选择性反射  多层膜  纳米粒子    
Abstract: Radiative cooling is a new type of cooling method that has attracted much attention. In this way, it could transfer energy in the form of heat radiation to outer space through the atmospheric transmittance window (ATW) by the materials, thus realizing passive cooling. Generally, the materials suitable for daytime radiative cooling should be highly emissive within the wavelength range from 8 to 13 μm, and its absorption in the solar spectrum should be less than 5%. Radiative cooling technology has broad application prospects which could provide green and low-consumption solutions to building energy efficiency, cooling costume, refrigerated condensation, battery cooling and other problems.
Currently, the cooling power of radiative cooling technology indeed can not achieve the expected objectives, and the key reason lies in the mismatch of spectral curve between radiator and ideal radiative coolers. Hence, many conventional materials with new-designed structures have been put forward to promote this technology. Those newly developed radiative cooling materials simultaneously possess high reflectivity in the solar spectrum and high emissivity in the ATW by constructing radiators with photonic band gaps or Mie scattering structures.
With structural design, such as polymer doped nanoparticles and stacking of materials with different refractive indices,radiative cooling materials are more consistent with the ideal radiative coolers' spectral characteristics. Some polymers have a high emissivity in the ATW, and meanwhile, effectively reduce the heat input from heat conduction and heat convection. It has been suggested by some research results that the combination of complementary doped nanoparticles with polymer could cover the whole target band and greatly enhance the cooling power. Some research brought in photonic crystals to block the propagation of an electromagnetic wave with specific wavelength. By alternately arranging of different refractive index layers, the overall absorption of sunlight can be reduced without affecting the infrared radiation of the emissive layer.
This paper mainly reviews recent advancement of daytime radiative cooling materials, which are, according to their structure, divided into thin films, coatings, fabrics and bulks, and also summarizes the applications of radiative coolers in buildings and battery cooling.
Key words:  radiative cooling    selective radiation    selective reflection    multilayer    nano particle
发布日期:  2022-02-10
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52073303);湖南省自然科学基金(2021JJ10049)
通讯作者:  liudongqing07@nudt.edu.cn   
作者简介:  万中伊欣,2019年6月毕业于江西财经大学,获得管理学学士学位。现为国防科技大学硕士研究生,在余金山副教授与刘东青副教授的指导下进行研究。目前主要研究领域为光谱选择性红外辐射材料。
刘东青,国防科技大学空天科学学院副教授。2014年获国防科技大学材料科学与工程博士学位。主要从事红外辐射调控材料及其在自适应伪装、红外隐身和智能热控等技术的应用研究。
引用本文:    
万中伊欣, 刘东青, 余金山. 日间辐射制冷材料研究进展[J]. 材料导报, 2022, 36(3): 20100091-9.
WAN Zhongyixin, LIU Dongqing, YU Jinshan. Research Progress of Daytime Radiative Cooling Materials. Materials Reports, 2022, 36(3): 20100091-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20100091  或          http://www.mater-rep.com/CN/Y2022/V36/I3/20100091
1 Singh S K, Sundaram S, Kishor K. Photosynthetic microorganisms: mecha-nism for carbon concentration, Springer Press, German, 2014, pp.5.
2 Catalanotti S, Cuomo V, Piro G, et al. Solar Energy, 1975, 17, 83.
3 Bartoli B, Catalanotti S, Coluzzi B, et al. Applied Energy ,1977, 3, 267.
4 Harrison A W, Walto M R. Solar Energy, 1978, 20, 185.
5 Granqvist C G, Hjortsberg A. Journal of Applied Physics, 1981, 52, 4205.
6 Eriksson T S, Granqvist C G. Journal of Applied Physics, 1986, 60, 2081.
7 Eriksson T S, Granqvist C G. Applied Optics, 1983, 22,3204.
8 Lushiku E M, Hjortsberg A, Granqvist C G. Journal of Applied Physics, 1982, 53, 5526.
9 Gentle A R, Smith G B. Nano Letters, 2010, 10, 373.
10 Zhai Y, Ma Y, David S N, et al. Science, 2017, 355, 1062.
11 Rephaeli E, Raman A, Fan S. Nano Letters, 2013, 13, 1457.
12 Raman A P, Anoma M A, Zhu L, et al. Nature, 2014, 515, 540.
13 Chen Z, Zhu L, Raman A, et al. Nature Communications, 2016, 7, 13729.
14 Peng L, Liu D, Cheng H. Solar Energy Materials & Solar Cells, 2019, 193, 7.
15 Mandal J, Fu Y, Yu N, et al. Science, 2018,10, 1126.
16 Chen M, Li W, Tao S, et al. Coatings, 2020, 10 , 144.
17 Bao H, Yan C, Wang B, et al. Solar Energy Materials & Solar Cells, 2017, 168, 78.
18 Chen Y J, Mandal J, Li W X, et al. Science Advances, 2020, 6, eaaz5413.
19 Nan S N, Cheng C T, Carter M J, et al. Light: Science & Applications, 2018, 7, 37.
20 Hsu P C, Song A Y, Catrysse P B, et al. Science, 2016, 353, 1019.
21 Hsu P C, Liu C, Song A Y, et al. Science Advances, 2017, 3, e1700895.
22 Peng Y, Chen J, Song Y A, et al. Nature Sustainability, 2018, 1, 105.
23 Cai L L, Song Y A, Li W, et al. Advanced Materials, 2018, 30, 201802152.
24 Cai L L, Peng Y, Xu J, et al. Joule, 2019, 3, 15.
25 Zhang X A, Yu S, Xu B, et al. Science, 2019, 363, 619.
26 Li T, Zhai Y, He S, et al. Science, 2019, 364,760.
27 Goldstein E A, Raman A P, Fan S. Nature Energy, 2017, 2, 17143.
28 Zhao D L, Aili A, Zhai Y, et al. Joule, 2019, 3, 111.
29 Zhou M, Song H, Xu X, et al. Proceedings of SPIE, 2019, 11121,1112107.
30 Li W, Shi Y, Chen K. ACS Photonics, 2017, 4, 774.
31 Chen Z, Zhu L, Li W, et al. Joule, 2019, 3, 101.
32 Di H, Bing F N, Man P W. Solar Energy Materials & Solar Cells, 2020, 206, 110270.
33 Shi N N, Tsai C C, Camino F, et al. Science, 2015, 349, 298.
[1] 卢跃磊, 刘伟阳, 李玉阁. 难混溶材料的抗辐照性能研究[J]. 材料导报, 2021, 35(z2): 311-317.
[2] 义水灵, 熊向源. 转铁蛋白在纳米靶向药物递送体系的应用[J]. 材料导报, 2021, 35(z2): 501-507.
[3] 廖培义, 陈延明, 王立岩, 高洁. 醇-水体系无表面活性剂纳米ZnO的制备及表征[J]. 材料导报, 2021, 35(Z1): 108-111.
[4] 马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
[5] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[6] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[7] 李红,邢增程,Erika Hodúlová,胡安明,Wolfgang Tillmann. 退火处理工艺在纳米多层膜材料研究中的应用进展[J]. 材料导报, 2020, 34(3): 3099-3105.
[8] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[9] 王斌, 罗晓宇, 王琛, 周晓蕊, 胡颖晖, 房二鑫. 纳米Al2O3粒子含量对碳泡沫复合材料力学和高温氧化性能的影响[J]. 材料导报, 2020, 34(18): 18159-18164.
[10] 杨磊, 杨志, 连锋. 碳量子点作为生物相容性发光材料在再生医学方面的应用[J]. 材料导报, 2019, 33(Z2): 1-9.
[11] 孙莉, 陈延明. SDS表面修饰纳米ZnO制备及抗菌性能研究[J]. 材料导报, 2019, 33(Z2): 89-91.
[12] 韩瑞路, 阎红娟. Ti-Si-N纳米多层膜的研究进展[J]. 材料导报, 2019, 33(Z2): 169-174.
[13] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[14] 韩贵华, 张宝林, 苏礼超, 黄银平, 范子梁, 赵应征. 二肉豆蔻酰磷脂酰胆碱修饰的氧化铁纳米粒子在PC-12细胞内的分布[J]. 材料导报, 2019, 33(6): 1047-1051.
[15] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed