Please wait a minute...
材料导报  2021, Vol. 35 Issue (15): 15212-15219    https://doi.org/10.11896/cldb.20050130
  高分子与聚合物基复合材料 |
聚丙烯酸酯材料改性技术概况
马长坡1, 刘兴琛2, 李永赞1, 张健1, 亢敏霞1, 邱祖民1
1 南昌大学资源环境与化工学院,南昌 330000
2 崇义章源钨业股份有限公司, 赣州 341300
Research Progress in Modification of Polyacrylate
MA Changpo1, LIU Xingchen2, LI Yongzan1, ZHANG Jian1, KANG Minxia1, QIU Zumin1
1 School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang 330000, China
2 Chongyi Zhangyuan Tungsten Co., Ltd, Ganzhou 341300,China
下载:  全 文 ( PDF ) ( 2764KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚丙烯酸酯是一类由丙烯酸酯或甲基丙烯酸酯为主要原料合成的高分子聚合物,它具有良好的力学性能、耐候性能和耐酸碱性能,其制备工艺简单,成本低廉,被广泛用作皮革涂饰、建筑涂料和木材的成膜材料。但由于纯聚丙烯酸酯的抗菌性能、力学性能和热稳定性能较差,限制了其应用范围,因此,可通过化学改性和结构设计改善其性能。
利用环氧树脂改性丙烯酸酯得到的环氧丙烯酸酯兼具两者的优点,拥有良好的耐候性和热稳定性。目前环氧树脂改性丙烯酸酯主要有三种方法:物理共混法、酯化改性法、接枝共聚法。聚氨酯一般由异氰酸酯和含活泼氢的化合物聚合而成,可分为聚酯型聚氨酯和聚醚型聚氨酯。聚氨酯丙烯酸酯复合乳液固化涂膜具有优异的耐高温性能和机械加工性能,已被广泛应用于油墨、涂料、胶粘剂等领域。聚氨酯改性的方法有:物理共混法、复合共聚法、核壳共聚法、互穿聚合物网络法。氟聚合物材料具有很多优异的性能,如极低的表面能、优异的稳定性。将含氟基团引入丙烯酸酯乳液中,在固化成膜过程中,含氟基团会向膜表面富集,保护其内部结构,从而获得了性能优异的丙烯酸酯树脂。有机硅是一类无机有机高分子,可以用来连接无机物与有机物。有机硅改性丙烯酸酯的主要方法有:缩聚法、自由基聚合法、硅氢加成法、互穿网络法等。纳米材料的发展也对聚丙烯酸酯的改性起到了积极的作用,纳米材料改性聚丙烯酸酯既可以弥补乳液本身的不足,也具有纳米粒子的优良特性,目前常用的纳米粒子主要有ZnO、Fe3O4、Al2O3、TiO2等。
本文介绍了采用环氧树脂、聚氨酯、有机氟、有机硅和纳米粒子对聚丙烯酸酯进行改性的研究进展,综述了近年来这些改性物质的结构特点、改性方法、改性性能等方面的研究成果,并对其发展方向进行了分析和展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马长坡
刘兴琛
李永赞
张健
亢敏霞
邱祖民
关键词:  丙烯酸酯  环氧树脂  聚氨酯  有机氟  有机硅  纳米粒子    
Abstract: Polyacrylate is a kind of macromolecule polymer synthesized from acrylate or methacrylate. It has good mechanical properties, weather resis-tance, acid and alkali resistance, its preparation process is simple and low in cost. It is widely used as a film-forming material for leather finishing, building coatings and wood. However, the application of pure polyacrylate is limited because of its poor antibacterial properties, mechanical properties and thermal stability. The functional behavior of polyacrylate can be improved by chemical modification and structural design.
The epoxy-acrylate obtained by using epoxy resin modified acrylate has the advantages of both, and has good weather resistance and thermal stability. At present, there are three methods of epoxy resin modifying acrylate: physical blending, esterification modification and graft copolymerization. Polyurethane is generally composed by isocyanate and active hydrogen compound, which can be divided into polyester polyurethane and polyether polyurethane. Polyurethane-acrylate composite emulsion curing film has excellent high temperature resistance, mechanical properties, and has been widely used in ink, coatings, adhesives and other fields. The methods of polyurethane modification include physical blending, composite copolymerization, core-shell copolymerization and interpenetrating polymer network. Fluoropolymer materials have many excellent properties, such as extremely low surface energy and excellent stability. The fluorine-containing groups are introduced into the acrylate emulsion. During the curing process, the fluorine-containing groups will accumulate on the surface of the membrane, protect the internal structure, and obtain the acrylate resin with excellent performance. Silicone is a kind of inorganic organic polymer, which can be used to connect inorganic matter with organic matter. There are mainly several different methods of silicone modified acrylate: polycondensation, free radical polymerization, hydrosilo-xane addition, interpenetrating network method, etc. The development of nanomaterials has also played a positive role in the modification of polyacrylate. Nanomaterials modified polyacrylates can not only make up for the deficiency of the emulsion itself, but also add the excellent cha-racteristics of nanoparticles. At present, the common nanoparticles mainly include ZnO, Fe3O4, Al2O3, TiO2 and so on.
This paper introduces the research progress of polyacrylate modified by epoxy resin, polyurethane, organic fluorine, silicone and nanoparticles. In this paper, the structural characteristics, modification methods and modification properties of these modified materials in recent years are reviewed, and their development direction is analyzed and prospected.
Key words:  acrylate    epoxy resin    polyurethane    organofluorine    organosilicon    nanoparticles
               出版日期:  2021-08-10      发布日期:  2021-08-31
ZTFLH:  TQ316.6  
基金资助: 国家自然科学基金(51568048)
作者简介:  马长坡,2018年于南昌大学获得化学工程与工艺学士学位,现于南昌大学化学工程专业攻读硕士学位,研究方向为高分子材料的合成和应用。
邱祖民,男,1963年出生,江西赣县人。1984年本科毕业于江西工学院无机化工专业。1993年在华东理工大学获化学工程专业工学硕士。1997年在华南理工大学获工业催化专业工学博士。现为全国高等医学教育学会药学教育研究会理事、国家无机化工领域学术带头人、江西省中青年学科带头人等。邱祖民主要从事化工与环保方面的研究。目前正在主持国家科委(国际合作)、国家教委、江西省自然科学基金、江西省科委、江西省教委、南昌市科委等的科研项目。
引用本文:    
马长坡, 刘兴琛, 李永赞, 张健, 亢敏霞, 邱祖民. 聚丙烯酸酯材料改性技术概况[J]. 材料导报, 2021, 35(15): 15212-15219.
MA Changpo, LIU Xingchen, LI Yongzan, ZHANG Jian, KANG Minxia, QIU Zumin. Research Progress in Modification of Polyacrylate. Materials Reports, 2021, 35(15): 15212-15219.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20050130  或          http://www.mater-rep.com/CN/Y2021/V35/I15/15212
1 Xu W, An Q, Hao L, et al. Journal of Applied Polymer Science,2012,125(3),2376.
2 Jin H, Xu W. Coatings,2018,8(1),31.
3 Keskin D, Mokabbar T, Pei Y, et al. Polymers,2018,10(5),534.
4 Najafi F, Hadavand B S, Pournamdar A. Colloid and Polymer Science,2017,295(9),1717.
5 Jankauskaite V, Lazauskas A, Griskonis E, et al. Molecules,2017,22(6).
6 Hadavand B S, Hosseini H. Science and Engineering of Composite Mate-rials,2017,24(5),691.
7 Çanak T Ç, Kaya K, Serhatl I E. Progress in Organic Coatings,2014,77(11),1911.
8 Kishi H, Kunimitsu Y, Nakashima Y, et al. Express Polymer Letters,2017,11(10),765.
9 Sangermano M, Carbonaro W, Bongiovanni R, et al. Macromolecular Materials and Engineering,2010,295(5),469.
10 Wan K. International Journal of Electrochemical Science,2016,8914.
11 Hao Y, Bian J, Yang H, et al. Chemical Research in Chinese Universities,2016(1),140.
12 Shi H, Liu W, Yang M, et al. Macromolecular Research,2019,27(4),412.
13 Shen L, Li Y, Zheng J, et al. Progress in Organic Coatings,2015,89,17.
14 Zheng Y, Zhou L, Yang Y, et al. Journal of Applied Polymer Science,2008,107(6),4053.
15 Sun J, Fang H, Wang H, et al. Journal of Polymer Engineering,2017,37(2),113.
16 Wang X W, He Y F, Wang R M, et al. Chemical Industry and Enginee-ring Progress,2012,31(9),2011(in Chinese).
王晓雯,何玉凤,王荣民,等.化工进展,2012,31(9),2011.
17 Wang Y, Chen Z, Yu F. Journal of Macromolecular Science, Part A,2018,55(2),205.
18 Li S, Wang W, Liu L, et al. Polymer Bulletin,2008,61(6),749.
19 Yang J, Wang Z, Zeng Z, et al. Journal of Applied Polymer Science,2002,84(10),1818.
20 Zhang J L, Wu D M, Yang D Y, et al. Journal of Polymers and the Environment,2010,18(2),128.
21 Zhang Y, Asif A, Shi W. Progress in Organic Coatings,2011,71(3),295.
22 Qiu F X, Zhang J L, Wu D M, et al. Plastics, Rubber and Composites,2010,39(10),454.
23 Wang Z, Gao D, Yang J, et al. Journal of Applied Polymer Science,1999,73(14),2869.
24 Wang X, Shen Y, Lai X. Progress in Organic Coatings,2014,77(1),268.
25 Wu H, Zhu M, Liu Z, et al. Construction and Building Materials,2015,84,192.
26 Guo T, Tang D, Song M, et al. Journal of Polymer Science Part A: Polymer Chemistry,2007,45(22),5067.
27 Chen L, Wu F. Journal of Saudi Chemical Society,2014,18(5),545.
28 Huang P Y, Chao Y C, Liao Y T. Journal of Applied Polymer Science,2007,104(4),2451.
29 Cheng X, Chen Z, Shi T, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,292(2-3),119.
30 Lei H, He D, Hu J, et al. Journal of Coatings Technology and Research,2018,15(4),809.
31 Li X, Yu R, Zhao T, et al. European Polymer Journal,2018,108,399.
32 Xu K, Hu J, Jiang X, et al. Coatings,2018,8(4),151.
33 Mazurek M, Kinning D J, Kinoshita T. Journal of Applied Polymer Science,2001,80(2),159.
34 Xu L, Xing P, Xie H, et al. Journal of Materials Science and Enginee-ring,2010,4(3).
35 Kong X Z, Zou D, Zhu X. Journal of Polymer Research,2014,21(3),1.
36 Naghash H J, Ghandeharialavije M. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry,2014,44(4),514.
37 Xiao J, Qiu Z, Yang W, et al. Progress in Organic Coatings,2018,116,1.
38 Lin M, Chu F, Guyot A, et al. Polymer,2005,46(4),1331.
39 Khanjani J, Pazokifard S, Zohuriaan-Mehr M J. Progress in Organic Coa-tings,2017,102,151.
40 Murariu M, Paint Y, Murariu O, et al. Journal of Applied Polymer Science,2015,132(48).
41 Pannasri P, Siriphannon P, Monvisade P, et al. Journal of Polymer Research,2011,18(6),2245.
42 Sontakke T K, Jagtap R N, Singh A, et al. Progress in Organic Coatings,2012,74(3),582.
43 Liao W, Gu A, Liang G, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2012,396,74.
44 Pourjavadi A, Abedin-Moghanaki A, Nasseri S A. RSC Advances,2016,6(10),7982.
45 Mahdavian A R, Ashjari M, Mobarakeh H S. Journal of Applied Polymer Science,2008,110(2),1242.
46 Chen B, Chen T, Fang S, et al. Advanced Powder Technology,2016,27(6),2462.
47 Wåhlander M, Nilsson F, Larsson E, et al. Polymer,2014,55(9),2125.
48 Ran W, Lin S H, Rempel G L. Polymer-Korea,2017,41(3),385.
49 Wang X, Li Q, Wang Y, et al. Polymer Composites,2018,39(6),1988.
50 Zhang Y, Zhang S, Wu S. Chemical Engineering Journal,2019,371,609.
51 Huang Y, Lv Z, Cao Z, et al. Surface Engineering,2019,35(5),435.
52 Ma W, Li S, Kou D, et al. Dyes and Pigments,2019,160,740.
53 Ren X, Wei Y, Zhao H, et al. Colloid and Polymer Science,2018,296(3),575.
54 Pawlaczyk M, Schroeder G. Journal of Molecular Liquids,2019,281,176.
55 Xu T, Xiao Q, Chen J, et al. Polymers,2019,11(2),255.
56 Provost M, Raulin K, Maindron T, et al. Journal of Sol-Gel Science and Technology,2019,89(3),796.
57 Wang H, Qin S, Yang X, et al. Chemical Engineering Journal,2018,351,939.
58 Sánchez C C, Wáhlander M, Karlsson M, et al. Polymers,2019,11(4),740.
59 Li J, Li X, Zhu K, et al. Journal of Macromolecular Science, Part A,2018,55(9),649.
60 Yu C, Chen Q, Wang A, et al. Polymer International,2015,64(9),1219.
61 Merijs-Meri R, Zicans J, Ivanova T, et al. Polymer Composites,2015,36(6),1048.
62 Morgen T O, Luttikhedde H, Mecking S. Macromolecules,2019,52(11),4270.
63 Delibaş A, Yldz U, Tauer K. Journal of Applied Polymer Science,2019,136(18),47423.
64 Erba S E, Batürk. Materiali in Tehnologije,2019,53(1),87.
65 Castillo-Pérez R, Hernández-Vargas M L, Flores-Cedillo O, et al. Polymer Composites,2019,40(1),263.
[1] 廖培义, 陈延明, 王立岩, 高洁. 醇-水体系无表面活性剂纳米ZnO的制备及表征[J]. 材料导报, 2021, 35(Z1): 108-111.
[2] ZEZE Armande Loraine Phalé, 徐红岩, 张默, 马国伟. 环氧树脂-地聚物复合涂层材料耐海水腐蚀性研究[J]. 材料导报, 2021, 35(Z1): 600-606.
[3] 苏毅, 李婷, 李爱群. 极小粒子增强聚氨酯阻尼性能的影响因素分析[J]. 材料导报, 2021, 35(4): 4205-4209.
[4] 马甜, 贺鹏飞, 李文晓. 环氧/酸酐体系网络结构对形状记忆性能的影响[J]. 材料导报, 2021, 35(2): 2145-2150.
[5] 李廷廷, 刘锦春. 硬段含量对聚酯型温敏聚氨酯弹性体性能的影响[J]. 材料导报, 2021, 35(2): 2161-2165.
[6] 许智鹏, 吉静茹, 刘育红, 强军锋. UV固化脂环族环氧树脂体系的设计及其响应面优化[J]. 材料导报, 2021, 35(14): 14190-14197.
[7] 吴加雪, 张天栋, 张昌海, 冯宇, 迟庆国, 陈庆国. 高导热环氧树脂的研究进展[J]. 材料导报, 2021, 35(13): 13198-13204.
[8] 陈阳, 刘志勇, 管焓宇, 钱百惠. 水性聚氨酯增韧环氧树脂研究及应用进展[J]. 材料导报, 2021, 35(13): 13205-13214.
[9] 颜蜀雋, 熊海龙, 庞忠荣, 万鹏颖, 庄壮, 齐福刚. 新型无机纳米填料改性海泡石的制备及在环氧树脂涂料中的性能[J]. 材料导报, 2021, 35(12): 12057-12062.
[10] 赵昌方, 周志坛, 朱宏伟, 邢成龙, 任杰, 仲健林, 乐贵高. 锻造/层合碳纤维-环氧树脂复合材料压缩性能实验与仿真[J]. 材料导报, 2021, 35(12): 12209-12213.
[11] 林绍铃, 黄初, 赵小敏, 陈国华. 石墨烯/黑磷纳米复合粒子对环氧树脂阻燃与热稳定性能的影响[J]. 材料导报, 2021, 35(10): 10184-10188.
[12] 范娟娟, 闵样, 杨吉, 张永航, 班大明. 一种具有良好抑烟性能的磷杂菲阻燃剂在环氧树脂中的应用研究[J]. 材料导报, 2021, 35(10): 10189-10196.
[13] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[14] 申欣, 孟昭旭, 廉鹤. 纳米羟基磷灰石复合材料在癌症治疗中的应用进展[J]. 材料导报, 2020, 34(Z2): 88-90.
[15] 杨海冬, 王德志, 李洪峰, 冯浩, 肖万宝, 赵立伟, 曲春艳. 含酚酞侧基聚芳醚酮(PEK-C)对联苯型环氧树脂性能的影响[J]. 材料导报, 2020, 34(Z2): 580-585.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed