Please wait a minute...
材料导报  2021, Vol. 35 Issue (4): 4205-4209    https://doi.org/10.11896/cldb.19070103
  高分子与聚合物基复合材料 |
极小粒子增强聚氨酯阻尼性能的影响因素分析
苏毅1, 李婷2, 李爱群2,3
1 南京林业大学土木工程学院,南京 210037
2 东南大学土木工程学院,南京 210096
3 北京建筑大学土木工程学院,北京 100044
Analysis of Factors Influencing the Damping Performance of Polyurethane with Minimum Particles
SU Yi1, LI Ting2, LI Aiqun2,3
1 School of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
2 School of Civil Engineering, Southeast University, Nanjing 210096, China
3 School of Civil Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
下载:  全 文 ( PDF ) ( 2675KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 与纳米粒子相比,极小粒子价格低廉且性能稳定,是增大聚氨酯材料的阻尼耗能能力并拓宽有效温域范围的有效手段。本实验选取玻璃纤维、石墨烯、T-ZnOw和AO-80四种极小粒子,根据“四因素、三水平”正交表分别对各配方制成的聚氨酯试样进行力学性能试验,以研究极小粒子对聚氨酯材料阻尼性能的影响效果。试验结果表明,玻璃纤维和AO-80对聚氨酯材料的损耗因子峰值及大阻尼温域范围的拓宽均具有显著的提升效果;石墨烯以极低的含量提高了聚氨酯材料的损耗因子峰值;T-ZnOw可提高聚氨酯材料的TA值,并拓宽其大阻尼温域,但随T-ZnOw含量的增大,阻尼性能指标均降低。此外,通过极差分析确定了聚氨酯材料设计优化方案:100份基体材料中加入12份玻璃纤维、0.3份T-ZnOw、0.3份石墨烯以及18份AO-80。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏毅
李婷
李爱群
关键词:  聚氨酯  极小粒子  正交试验  阻尼性能    
Abstract: Compared with nano particles, minimum particles are cheap and stable, which is an effective way to increase the damping performance of polyurethane materials and broaden the effective damping temperature range. To study the effects of minimum particles on the damping properties of polyurethane materials, the mechanical properties of polyurethane samples made of glass fiber, graphene, T-ZnOw and AO-80 were tested according to the orthogonal table of “four factors and three levels”. The experimental results show that the glass fiber and AO-80 have significant effect on increasing the peak of loss factor and broadening the large damping temperature range. Graphene can increase the peak of loss factor of polyurethane materials with very little content. T-ZnOw can increase the TA of polyurethane materials and widen the large damping temperature range, but with the increase of T-ZnOw content, the damping performance indexs are reduced. In addition, the design optimization of polyurethane materials was determined through analysis of extremely poor: 12 glass fibers, 0.3 T-ZnOw, 0.3 graphene and 18 AO-80 were added to 100 matrix materials.
Key words:  polyurethane    minimum particles    orthogonal test    damping performance
               出版日期:  2021-02-25      发布日期:  2021-02-23
ZTFLH:  TU352  
基金资助: 湖南省重点研发计划(2018WK2111);湖南省创新技术投资项目(2018GK5028)
通讯作者:  suyi@njfu.edu.cn   
作者简介:  苏毅,南京林业大学土木工程学院,副教授。2006年毕业于东南大学土木工程学院,获得防灾减灾工程与防护工程专业博士学位。同年进入南京林业大学土木工程学院工作至今,主要从事建筑结构抗震与减震、现代竹木结构的研究。在国内外重要期刊发表文章20多篇,申报专利10余项。
引用本文:    
苏毅, 李婷, 李爱群. 极小粒子增强聚氨酯阻尼性能的影响因素分析[J]. 材料导报, 2021, 35(4): 4205-4209.
SU Yi, LI Ting, LI Aiqun. Analysis of Factors Influencing the Damping Performance of Polyurethane with Minimum Particles. Materials Reports, 2021, 35(4): 4205-4209.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19070103  或          http://www.mater-rep.com/CN/Y2021/V35/I4/4205
1 Liu S B, Li A Q, Zhang R J, et al. Journal of Southeast University, 2019, 49(1),61(in Chinese).
刘少波, 李爱群, 张瑞君,等. 东南大学学报, 2019, 49(1),61.
2 Fang S, Cheng G H, Zhang J, et al. Chemical Propellants & Polymeric Materials, 2016, 14(2),14(in Chinese).
房松, 程国华, 张均,等. 化学推进剂与高分子材料, 2016, 14(2),14.
3 Zhu G L, Han D, Yuan Y, et al. Chinese Journal of Polymer Science, 2018, 36 (11),1297.
4 Zhou Y, Chen F, Chen D Z. Polymer Bulletin, 2015(16),15(in Chinese).
周旸, 陈枫, 谌东中.高分子通报, 2015(16),15.
5 Yin C L, Wen S G, Wang J H, et al. Polymer Bulletin, 2016(2),40(in Chinese).
殷常乐, 温绍国, 王继虎,等. 高分子通报, 2016(2),40.
6 Yu X, Lv Z P, Tong Y C, et al. Polymer Materials Science & Enginee-ring, 2013, 29(7), 101(in Chinese).
余翔, 吕志平, 佟玉超,等. 高分子材料科学与工程, 2013, 29(7), 101.
7 Kang Seok Lee, Jeong-Il Choi, Sang-Koo Kim, et al. Construction and Building Materials, 2017, 3(233), 68.
8 Shi X, Li Q, Fu G, et al.Polymer Testing, 2015, 33, 1.
9 Khimi S R, Pickering K L. Composites Part B: Engineering, 2016, 90, 115.
10 Zhang W T, Zhang Y S, Wu Z T, et al. Materials Reports B:Research Papers, 2019, 33(7), 2331(in Chinese).
张王田, 张云升, 吴志涛, 等. 材料导报:研究篇, 2019, 33(7), 2331.
11 Adeyinka Idowu, Pranjal Nautiyal, Luiza Fontoura, et al. Polymer Composites, 2019, 40,1862.
12 Liu G, Tang S W, Ren W C, et al. Materials and Design, 2014, 3(34),244.
13 Xiong M, Huang Z X, Lv X S, et al.Thermosetting Resin, 2017, 32(4), 24(in Chinese).
熊梦, 黄志雄, 吕雪松, 等. 热固性树脂, 2017, 32(4), 24.
14 Liu Y S, Yan X, Li L, et al. Polymer Materials Science & Engineering, 2018, 34(1),79(in Chinese).
刘吟松, 晏欣, 李亮, 等.高分子材料科学与工程, 2018, 34(1), 79.
[1] 李廷廷, 刘锦春. 硬段含量对聚酯型温敏聚氨酯弹性体性能的影响[J]. 材料导报, 2021, 35(2): 2161-2165.
[2] 林绍铃, 罗祖获, 陈丹青, 赵小敏, 陈国华. 无卤阻燃硬质聚氨酯泡沫塑料研究进展[J]. 材料导报, 2021, 35(1): 1196-1202.
[3] 刘盼, 肖学英, 常成功, 阿旦春, 李颖, 董金美, 郑卫新, 黄青, 董飞, 刘秀泉, 文静. 基于正交试验和响应面法优化煅烧法提锂副产物制备氯氧镁水泥材料的工艺研究[J]. 材料导报, 2020, 34(Z2): 308-314.
[4] 臧恒波, 乔菁. 无压浸渗工艺对Al2O3/Al-Mg-Si复合材料微观组织和力学性能的影响[J]. 材料导报, 2020, 34(Z2): 371-375.
[5] 雷达, 王海林, 周彪, 李贤, 包爽. 铝合金-低碳钢异种金属电阻点焊工艺研究[J]. 材料导报, 2020, 34(Z2): 465-468.
[6] 李沛欣, 袁凌, 潘磊, 刘伟超, 周文明, 任拓. MW级风电叶片用聚氨酯涂料的研究进展[J]. 材料导报, 2020, 34(Z2): 594-597.
[7] 张庆, 侯德华, 刘廷国. 水固化型聚合物改性乳化沥青混合料性能研究[J]. 材料导报, 2020, 34(Z2): 612-617.
[8] 李平, 赵焰杰, 王李波. 基于交互正交试验的304不锈钢冲蚀磨损性能的影响因素研究[J]. 材料导报, 2020, 34(8): 8149-8153.
[9] 许召赞, 李江, 伍伟玲, 党海春, 李剑锋. 微交联PPG型聚氨酯弹性体的制备与性能[J]. 材料导报, 2020, 34(16): 16172-16176.
[10] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[11] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[12] 向科炜, 林金斌. 水性光固化树脂研究进展[J]. 材料导报, 2019, 33(Z2): 577-579.
[13] 陈明军. 涂料用分散剂研究进展[J]. 材料导报, 2019, 33(Z2): 643-645.
[14] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[15] 刘帅, 马兴元. 封闭型无溶剂聚氨酯的研究进展[J]. 材料导报, 2019, 33(23): 3892-3899.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Yating, REN Shaozhao, DANG Yongqiang, LIU Guoyang, LI Keke, ZHOU Anning, QIU Jieshan. Electrochemical Capacitive Properties of Coal-based Three-dimensional Graphene Electrode in Different Electrolytes[J]. Materials Reports, 2017, 31(16): 1 -5 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed