Please wait a minute...
材料导报  2020, Vol. 34 Issue (16): 16172-16176    https://doi.org/10.11896/cldb.19110165
  高分子与聚合物基复合材料 |
微交联PPG型聚氨酯弹性体的制备与性能
许召赞1, 李江2, 伍伟玲2, 党海春2, 李剑锋1
1 山西大学资源与环境工程研究所,太原 030006;
2 太原工业学院材料工程系,太原 030008
Synthesis and Properties of Micro-crosslinked Poly-propylene Glycol Based Polyurethane Elastomer
XU Zhaozan1, LI Jiang2, WU Weiling2, DANG Haichun2, LI Jianfeng1
1 Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China;
2 Department of Materials Engineering, Taiyuan Institute of Technology, Taiyuan 030008, China
下载:  全 文 ( PDF ) ( 3524KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚氧化丙烯多元醇(PPG)型聚氨酯弹性体具有良好的耐水解性和耐候性,但其力学性能和耐热性能不足。本工作以丙氧化季戊四醇(PPG-4,四官能度聚醚多元醇)、4,4′-二苯基甲烷二异氰酸酯(MDI) 和PPG-1000为原料,合成含有交联中心的PPG型聚氨酯预聚体,以1,4-丁二醇(BDO) 为扩链剂制备微交联PPG型聚氨酯预聚体弹性体。通过拉伸试验、维卡软化温度测试、动态力学性能分析(DMA)、差示扫描量热(DSC)和动态流变等手段,考察了不同PPG-4含量对PPG型聚氨酯弹性体力学性能、热性能和流变性能的影响。研究结果表明,PPG-4的加入可提高PPG型聚氨酯弹性体的拉伸强度、撕裂强度和硬度;微交联PPG型聚氨酯预聚体弹性体的耐热性能显著提升,其维卡软化温度由90 ℃(PPG-4含量为0%)提高至135 ℃(PPG-4占PPG-1000含量的3%);DSC与DMA结果表明,微交联PPG型聚氨酯预聚体弹性体的玻璃化转变温度明显提高;流变测试表明,PPG型聚氨酯弹性体的弹性模量、粘性模量和复数黏度均显著提高。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
许召赞
李江
伍伟玲
党海春
李剑锋
关键词:  聚氨酯  弹性体  微交联  聚氧化丙烯多元醇    
Abstract: Poly-propylene glycol based polyurethane elastomer shows excellent hydrolysis and weather resistance, poor heat resistance and mechanical property. In this work, the prepolymer containing crosslinking center was synthesized by adding pentaerythritol propoxylate into the system of 4,4′-diphenylmethane diisocyanate and poly-propylene glycol. Micro-crosslinked polyurethane elastomer was further synthesized with addition of 1,4-butanediol as the chain extender. The effect of pentaerythritol propoxylate content or crosslinking degree on the heat resistance, mechanical and rheological properties was investigated. It was found that the tensile strength, tear strength, hardness and heat resistance were improved with the addition of pentaerythritol propoxylate. Vicat softening temperature was enhanced from 90 ℃ of controlled uncrosslinked polyurethane elastomer to 135 ℃ when the additive amount of pentaerythritol propoxylate was 3% of PPG-1000. The glass-transition temperature, elasticity modulus, viscous modulus and complex viscosity of poly-propylene glycol based polyurethane elastomer were also enhanced.
Key words:  polyurethane    elastomer    mico-crosslinking    poly-propylene glycol
               出版日期:  2020-08-25      发布日期:  2020-07-24
ZTFLH:  TQ323.8  
基金资助: 国家自然科学基金(21908136);山西省高校科技创新基金项目(2019L0927);山西省“1331工程”重点学科(1331KSC)和协同创新中心建设计划(1331CIC)
通讯作者:  dhccitrus2011@163.com   
作者简介:  许召赞,山西大学讲师。2010年于青岛科技大学获理学学士学位,2013年于四川大学获理学硕士学位,2013—2015年于重庆文理学院材料与化工学院任教,2018年于中国科学院大学(中国科学院山西煤炭化学研究所)获工学博士学位。2018年入职山西大学资源与环境工程研究所。主持国家自然科学基金青年基金项目1项(21908136)。主要研究方向为高分子合成、高分子膜材料及水处理膜制备。
党海春,太原工业学院副教授。2006年9月至2015年6月,在四川大学获得化学专业理学学士学位和高分子化学与物理专业理学博士学位。2015年至今,在太原工业学院材料工程系任教,以第一作者发表SCI 论文3篇、EI论文1篇,已获授权国家发明专利3项。获太原工业学院“学术带头人”称号。研究方向为聚氨酯材料的合成、无机微纳米材料的构筑及聚氨酯与无机微纳米复合材料的制备。
引用本文:    
许召赞, 李江, 伍伟玲, 党海春, 李剑锋. 微交联PPG型聚氨酯弹性体的制备与性能[J]. 材料导报, 2020, 34(16): 16172-16176.
XU Zhaozan, LI Jiang, WU Weiling, DANG Haichun, LI Jianfeng. Synthesis and Properties of Micro-crosslinked Poly-propylene Glycol Based Polyurethane Elastomer. Materials Reports, 2020, 34(16): 16172-16176.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19110165  或          http://www.mater-rep.com/CN/Y2020/V34/I16/16172
1 Yang S Y, Jin H Y, Gao S J, et al. Engineering Plastics Application, 2018, 46(6), 138(in Chinese).
杨舒逸, 金怀洋, 高山俊,等.工程塑料应用, 2018, 46(6), 138.
2 Liu J, Li F. Chemical Propellants & Polymeric Materials,2018, 16(5),26(in Chinese).
刘菁,李汾.化学推进剂与高分子材料,2018,16(5),26.
3 Engels H W, Pirkl H G, Albers R, et al.Angewandte Chemie-International Edition,2013, 52(36), 9422.
4 Król P. Progress in Materials Science, 2007, 52(6), 915.
5 Wang W W, Chen H X, Dai Q L, et al. Smart Materials and Structures, 2018, 28(1), 015008.
6 Kumagai S, Motokucho S,Yabuki R, et al. Journal of Analytical and Applied Pyrolysis, 2017, 126, 337.
7 Xie H, Yang K K, Wang Y Z. Progress in Polymer Science, 2019, 95, 32.
8 Zhang C C, Zheng M K, Li B G. CIESC Journal, 2019(10), 1(in Chinese).
张聪聪, 郑梦凯, 李伯耿. 化工学报, 2019(10), 1.
9 Zhou J, Bhagat V, Becker M L. ACS Applied Materials & Interfaces, 2016, 8(49), 33423.
10 Li Z, Zhang Z, Liu K L, et al. Biomacromolecules, 2012, 13(12), 3977.
11 Meng Q B, Lee S I, Nah C, et al. Progress in Organic Coatings, 2009, 66(4), 382.
12 Ma Y, Yang D, Shi W, et al. Polymer Engineering & Science, 2013, 53,343.
13 Kim I, Ahn J T, Ha C S, et al. Polymer, 2003, 44(11), 3417.
14 Shanxi Provincial Institute of Chemical Industry. Polyurethane elastomers manual, Chemical Industry Press, China, 2001(in Chinese).
山西省化工研究所. 聚氨酯弹性体手册, 化学工业出版社, 2001.
15 Chen H, Zhou H J,Liu D J, et al. Polyurethane Industry,2012, 27(4), 9(in Chinese).
陈浩,周海军,刘德居,等. 聚氨酯工业,2012, 27(4), 9.
16 Wang C D, Pan H B, Zhang L H, et al. Polyurethane Industry,2013, 28(4), 8(in Chinese).
汪存东,潘洪波,张丽华,等. 聚氨酯工业,2013, 28(4), 8.
17 Zheng J Y, Wu L, Chen H X, et al. New Chemical Materials,2013, 41(12), 33(in Chinese).
郑加英,伍林,陈红祥,等. 化工新型材料,2013, 41(12), 33.
18 Yi Y H, Li C T, Lu W Y. Polymer Materials Science & Engineering,2018, 34(6), 92(in Chinese).
易玉华,李春涛,卢无恙. 高分子材料科学与工程,2018, 34(6), 92.
19 Liu C, Zhang Z, Liu K L, et al. Soft Matter,2013, 9(3), 787.
20 Waletzko R S, Korley L T J, Pate B D, et al.Macromolecules,2009, 42(6), 2041.
21 Zhang S Y. Synthesis and room temperature self-healing performance of crosslinked polyurethane. Master’s Thesis, Qingdao University of Science & Technology, China, 2017(in Chinese).
张士玉. 交联型聚氨酯的合成及其室温自修复性能的研究. 硕士学位论文, 青岛科技大学, 2017.
22 Zhao P Z, Wang Y S, Zhu J H, et al. Polymer Materials Science & Engineering,2008, 24(1), 71(in Chinese).
赵培仲,王源升,朱金华,等. 高分子材料科学与工程,2008, 24(1), 71.
23 Niu G D, Wu B H, Mu H J.Journal of Harbin University of Science and Technology,2014, 19(3), 24(in Chinese).
牛古丹,吴宝华,牟宏晶. 哈尔滨理工大学学报,2014, 19(3), 24.
24 Mo H B, Lei C H, Xu R J, et al. Plastics,2015, 44(4), 50(in Chinese).
莫海彬,雷彩红,徐睿杰,等.塑料,2015, 44(4), 50.
25 Ding L, Yang J J, Wu Q Y, et al. Fine Chemicals, 2017, 34(12), 1334(in Chinese).
丁琳,杨建军,吴庆云,等.精细化工, 2017, 34(12), 1334.
26 Guo S S. Peraration and dynamicl and thermal propertites of PUE based on MDI. Master’s Thesis, Qingdao University of Science & Technology, China, 2016(in Chinese).
郭珊珊. MDI 体系聚氨酯弹性体的制备及其动态、耐热性能研究. 硕士学位论文, 青岛科技大学, 2016.
27 Zhang H F, Zhang D Z, Lv X H, et al. Journal of Functional Polymer,2015, 28(2), 207(in Chinese).
张鸿飞,张德震,吕幸辉,等.功能高分子学报,2015, 28(2),207.
[1] 陈龙飞, 游世辉, 赵小英. 二维声子晶体薄板隔声特性研究[J]. 材料导报, 2020, 34(Z1): 90-93.
[2] 章强, 刘洪利, 陈迎豪, 李兴建, 张宜恒. 纳米二氧化硅改性“Click”型侧链含氟聚氨酯的制备及在织物整理剂上的应用[J]. 材料导报, 2020, 34(14): 14218-14222.
[3] 庄煜, 郭艳玲, 李健, 姜凯译, 于跃强, 张慧. 仿血管聚氨酯基复合材料的激光烧结工艺研究[J]. 材料导报, 2020, 34(10): 10177-10181.
[4] 向科炜, 林金斌. 水性光固化树脂研究进展[J]. 材料导报, 2019, 33(Z2): 577-579.
[5] 赵西坡, 胡欢, 熊娟, 王鑫, 余晓磊, 彭少贤. 弹性体共混改性聚乳酸(PLA)高韧性共混物研究进展[J]. 材料导报, 2019, 33(Z2): 590-598.
[6] 陈明军. 涂料用分散剂研究进展[J]. 材料导报, 2019, 33(Z2): 643-645.
[7] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[8] 刘帅, 马兴元. 封闭型无溶剂聚氨酯的研究进展[J]. 材料导报, 2019, 33(23): 3892-3899.
[9] 金鑫, 郭乃胜, 尤占平, 谭忆秋. 聚氨酯改性沥青研究现状及发展趋势[J]. 材料导报, 2019, 33(21): 3686-3694.
[10] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[11] 刘泓吟, 杨宏宇, 陈明凤. 异氰酸酯指数对聚氨酯硬泡阻燃、热稳定性及燃烧性能的影响[J]. 材料导报, 2019, 33(12): 2071-2075.
[12] 杨洁, 吴宁, 潘月秀, 朱世鹏, 焦亚男, 陈利. 环氧改性水性聚氨酯上浆剂对碳纤维/氰酸酯树脂复合材料界面性能的影响[J]. 材料导报, 2019, 33(10): 1762-1767.
[13] 白静静, 苏会博, 刘志伟. 异氰酸酯功能化碳纳米管/热塑性聚氨酯弹性体复合材料的制备及流变性能[J]. 材料导报, 2018, 32(24): 4386-4391.
[14] 张万喜, 常海建, 窦艳丽, 黄刚, 张欢欢, 许东华, 石彤非, 管东波, 姚卫国. 汽车仪表板用聚氨酯搪塑粉料:组成、加工及流变性能[J]. 材料导报, 2018, 32(24): 4392-4397.
[15] 刘小可, 俞科静, 钱坤. 剪切增稠胶/聚氨酯泡沫复合材料的制备与力学性能[J]. 材料导报, 2018, 32(18): 3255-3260.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[6] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[7] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[8] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed