Please wait a minute...
材料导报  2018, Vol. 32 Issue (18): 3255-3260    https://doi.org/10.11896/j.issn.1005-023X.2018.18.028
  高分子与聚合物基复合材料 |
剪切增稠胶/聚氨酯泡沫复合材料的制备与力学性能
刘小可, 俞科静, 钱坤
江南大学生态纺织教育部重点实验室,无锡 214122
Preparation and Mechanical Performance of Shear Thickening Glue/Polyurethane Foam Composites
LIU Xiaoke, YU Kejing, QIAN Kun
Key Laboratory of Eco-Textile of Ministry of Education, Jiangnan University, Wuxi 214122
下载:  全 文 ( PDF ) ( 3993KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以聚氨酯泡沫(PUF)为体系基础,向体系中添加聚合物剪切增稠胶(STG),采用一步法成功制备了STG/PUF复合材料。研究分析了异氰酸酯指数(R值)以及STG含量对STG/PUF复合材料结构和性能的影响。结果表明,STG的加入会使泡沫的泡孔变大,发泡困难,但是会在一定范围内增加复合材料的压缩强度,并且会显著提高泡沫的静态吸能量,制备的STG/PUF样品(R值为0.75,STG质量分数为10%)的静态吸能量约为PUF的13倍。另外,随着R值的增加,PUF的密度先减小后增大,硬度逐渐增大,当异氰酸酯含量过高时,会导致泡沫脆性增加,降低其力学性能。当R值为0.75、STG质量分数为10%时,复合材料的力学性能最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘小可
俞科静
钱坤
关键词:  剪切增稠胶(STG)  聚氨酯泡沫(PUF)  力学性能  静态吸能量    
Abstract: The STG/PUF composites were prepared by a one-step method using polyurethane foam (PUF) as the basis of the system, with the presence of polymer shear thickening glue (STG). The influence of isocyanate index (R value) and STG content on microstructure and properties of the resultant STG/PUF composites were investigated. The results showed that the addition of STG enlarges the foam cells and inhibits the foaming process, while nevertheless, improves to a certain extent the composite’s compressive strength as well as remarkably promotes static energy absorption as the STG/PUF sample (R value is 0.75,STG mass fraction is 10%)exhibits an energy absorption capacity of about 12 times larger than that of PUF. In addition, the increasing R value, results in a biphasic (decrease → increase) change of PUF density, and a gradually increasing trend of hardness, but excessive isocyanate content would lead to the foam’s brittleness increment and the mechanical properties deterioration. The foam composite can achieve the optimum mechanical properties when the R value is 0.75 and the mass fraction of STG is 10%.
Key words:  shear thickening glue (STG)    polyurethane foam (PUF)    mechanical properties    static energy absorption
                    发布日期:  2018-10-18
ZTFLH:  TQ328.3  
基金资助: 连云港市产业前瞻与共性关键技术科技项目(CG1520);江苏省产学研联合创新资金-前瞻性联合研究项目(BY2016022-07);“十三五”国家重点研发计划项目(2016YFC-0304301);中央高校基本科研业务费专项资金资助(JUSRP51718A);江苏高校优势学科建设工程资助项目(PAPD)
通讯作者:  俞科静:女,1982年生,博士,副教授,主要研究方向为纺织复合材料 E-mail:yukejing@jiangnan.edu.cn   
作者简介:  刘小可:女,1993年生,硕士研究生,主要研究方向为纺织复合材料 E-mail:331351479@qq.com
引用本文:    
刘小可, 俞科静, 钱坤. 剪切增稠胶/聚氨酯泡沫复合材料的制备与力学性能[J]. 材料导报, 2018, 32(18): 3255-3260.
LIU Xiaoke, YU Kejing, QIAN Kun. Preparation and Mechanical Performance of Shear Thickening Glue/Polyurethane Foam Composites. Materials Reports, 2018, 32(18): 3255-3260.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.18.028  或          http://www.mater-rep.com/CN/Y2018/V32/I18/3255
1 Jiang Weifeng. Study on mechanical properties and mechanism of shear thickening material[D]. Hefei: University of Science and Technology of China,2015(in Chinese).
蒋伟峰.剪切增稠材料的力学性能表征及机理研究[D].合肥:中国科学技术大学,2015.
2 Brown E, Jaeger H M. Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming[J]. Reports on Progress in Physics,2014,77(4):046602.
3 Boersma W H, Laven J, Stein H N. Shear thickening (dilatancy) in concentrated dispersions[J]. Aiche Journal,1990,36(3):321.
4 Wang S, Jiang W, Jiang W, et al. Multifunctional polymer compo-site with excellent shear stiffening performance and magnetorheolo-gical effect[J]. Journal of Materials Chemistry C,2014,2(34):7133.
5 Soutrenon M, Michaud V. Impact properties of shear thickening fluid impregnated foams[J]. Smart Materials & Structures,2014,23(3):035022.
6 Ye Fang. Preparation and rheological property of shear thickening fluid based poly(styrene-acrylic acid) nanoparticles[D]. Hefei: University of Science and Technology of China,2014(in Chinese).
叶芳.聚苯乙烯-丙烯酸纳米粒子基剪切增稠液的制备与性能研究[D].合肥:中国科学技术大学,2014.
7 Zhang Zhouling, Liu He, Luo Jianhui, et al. Behavior, mechanism and application of shear thickening behavior of polymer solution[J]. Polymer Bulletin,2012(6):1(in Chinese).
张周玲,刘合,罗健辉,等.高分子溶液剪切增稠行为、机理及应用[J].高分子通报,2012(6):1.
8 Shan Lei, Tian Yu, Meng Yonggang, et al. Influences of medium and temperature on the shear thickening behavior of nano fumed silica colloids[J].Acta Physica Sinica,2015(6):68301(in Chinese).
山磊,田煜,孟永钢,等.分散介质和温度对纳米二氧化硅胶体剪切增稠行为的影响[J].物理学报,2015(6):68301.
9 Jiang Lingling. Application of shear thickening fluid on soft stab-resistant body armor[D].Wuxi:Jiangnan University,2011(in Chinese).
蒋玲玲.剪切增稠液体在柔性防刺材料中的应用研究[D].无锡:江南大学,2011.
10 Sun L L, Xiong D S, Xu C Y. Application of shear thickening fluid in ultra high molecular weight polyethylene fabric[J]. Journal of Applied Polymer Science,2013,129(4):1922.
11 Feng Xinya. Dynamic response of shear thickening fluid and its application in protective structures[D]. Beijing:Beijing Institute of Technology,2014(in Chinese).
冯新娅.剪切增稠流体的动态响应及其在防护结构中的应用[D].北京:北京理工大学,2014.
12 Nagayama T, Fukuoka D, Ito H, et al. Extension of the poiseuille formula for shear thickening materials and application to self-compacting concrete[J]. Applied Rheology,2008,18(6):62705.
13 Khandavalli S, Rothstein J P. The effect of shear-thickening on the stability of slot-die coating[J]. Aiche Journal,2016,62(12):4536.
14 Khandavalli S, Lee J A, Pasquali M, et al. The effect of shear-thickening on liquid transfer from an idealized gravure cell[J]. Journal of Non-Newtonian Fluid Mechanics,2015,221:55.
15 Hu Y, Wang S Q, Jamieson A M. Rheological and rheooptical stu-dies of shear-thickening polyacrylamide solutions[J]. Macromolecules,2002,28(6):1847.
16 Sha Xiaofei, Yu Kejing, Qian Kun. The impact of PEG with diffe-rent molecular weights on rheological behaviors of shear thickening fluid[J]. New Chemical Materials,2013,41(5):100(in Chinese).
沙晓菲,俞科静,钱坤.不同分子量PEG对剪切增稠液体流变性能的影响[J].化工新型材料,2013,41(5):100.
17 Sha Xiaofei. Preparation and properties research of shear thickening fluid[D]. Wuxi: Jiangnan University,2013(in Chinese).
沙晓菲.剪切增稠液体的制备与性能研究[D].无锡:江南大学,2013.
18 Lin N Y, Ness C, Cates M E, et al. Tunable shear thickening in suspensions[J]. Proceedings of the National Academy of Sciences USA,2016,113(39):10774.
19 Brown E, Forman N A, Orellana C S, et al. Generality of shear thicke-ning in dense suspensions[J]. Nature Materials,2010,9(3):220.
20 Landázuri G, Macías E R, García-Sandoval J P, et al. On the modelling of the shear thickening behavior in micellar solutions[J]. Rheologica Acta,2016,55(7):547.
21 Xiang S. A discussion on the application of catalysts used in the refrigerator rigid polyurethane foam[J]. Shanghai Chemical Industry,2002,27:15.
22 Zieleniewska M, Leszczyński M K, Szczepkowski L, et al. Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste[J]. Polymer Degradation & Stability,2016,132:78.
23 Quintero M W, Escobar J A, Rey A, et al. Flexible polyurethane foams as templates for cellular glass-ceramics[J]. Journal of Mate-rials Processing Technology,2009,209(12):5313.
24 Wang W, Pan Y, Pan H, et al. Synthesis and characterization of MnO2, nanosheets based multilayer coating and applications as a flame retardant for flexible polyurethane foam[J]. Composites Science & Technology,2016,123:212.
25 Nan Yunfei. Synthesis, microphase separation behavior and biome-dical properties of h-HTBN-b-PEG polyurethane block copolymer[D]. Xi’an:Shaanxi Normal University,2010(in Chinese).
南云菲.h-HTBN-b-PEG聚氨酯嵌段共聚物的合成、微相分离行为及其生物医学性能[D].西安:陕西师范大学,2010.
26 Oppon C, Hackney P M, Shyha I, et al. Effect of varying mixing ratios and pre-heat temperature on the mechanical properties of polyurethane (PU) foam[J]. Procedia Engineering,2015,132:701.
27 朱吕民,刘益军.聚氨酯泡沫塑料[M].北京:化学工业出版社,2005.
28 刘厚钧.聚氨酯弹性体手册[M].北京:化学工业出版社,2012.
29 Wang S, Xuan S, Wang Y, et al. Stretchable polyurethane sponge scaffold strengthened shear stiffening polymer and its enhanced safe-guarding performance[J]. ACS Applied Materials & Interfaces,2016,8(7):4946.
30 Cleet C. Isocyanates in flexible polyurethane foams[J]. Bulletin of Environmental Contamination & Toxicology,2003,70(2):0328.
31 Hyun K, Sang-Bum K, Cheol K Y. Effects of isocyanate index and aging on the physical properties of polyurethane foams[J]. Polymer Korea,2005,29(5):457.
32 Wen Zhenguang, Xu Liang,Cheng Jue. Effect of the viscosity of expandable phenolic resin on the formation process and performance of phenolic/polyurethane foam[J].Beijing University of Chemical Technology(Natural Science Edition),2011,38(2):52(in Chinese).
文振广,许亮,程珏.酚醛树脂黏度对酚醛/聚氨酯双组份泡沫成型和性能的影响[J].北京化工大学学报(自然科学版),2011,38(2):52.
33 Sun Xiaowei,Zou Wei,Du Zhongjie, et al. Rheological properties of polyurethane adhesive in curing process[J]. Polymer Materials Science & Engineering,2013,29(3):31(in Chinese).
孙晓微,邹威,杜中杰,等.聚氨酯胶粘剂固化反应对其流变性能的影响[J].高分子材料科学与工程,2013,29(3):31.
34 Hu Shisheng, Liu Jianfei,Wang Wu. Evaluation of cushioning pro-perties and energy-absorption capability of rigid polyurethane foam[J].Explosion and Shock Waves,1998,18(1):42(in Chinese).
胡时胜,刘剑飞,王悟.硬质聚氨酯泡沫塑料的缓冲吸能特性评估[J].爆炸与冲击,1998,18(1):42.
35 Deb A, Shivakumar N D. An experimental study on energy absorption behavior of polyurethane foams[J]. Journal of Reinforced Plastics & Composites,2009,28(24):3021.
36 Miltz J, Gruenbaum G. Evaluation of cushioning properties of plastic foams from compressive measurements[J]. Polymer Engineering & Science,1981,21(15):1010.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed