Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3686-3694    https://doi.org/10.11896/cldb.18090011
  高分子与聚合物基复合材料 |
聚氨酯改性沥青研究现状及发展趋势
金鑫1, 郭乃胜1, 尤占平2, 谭忆秋3
1 大连海事大学交通运输工程学院,大连 116026
2 密歇根理工大学土木与环境工程系,密歇根霍顿 MI49931
3 哈尔滨工业大学交通科学与工程学院,哈尔滨 150090
Research and Development Trends of Polyurethane Modified Asphalt
JIN Xin1, GUO Naisheng1, YOU Zhanping2, TAN Yiqiu3
1 College of Transportation Engineering, Dalian Maritime University, Dalian 116026
2 Department of Civil and Environmental Engineering, Michigan Technological University, Houghton MI49931, Michigan, USA
3 School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090
下载:  全 文 ( PDF ) ( 6154KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚合物改性沥青自进入人们的视野以来,其功能性和制备工艺不断得到优化,在改善行车舒适度、延长沥青路面的使用寿命方面取得了非常显著的效果。尽管它的发展已有近百年历史,但当前传统的聚合物改性沥青在生产、贮存以及性能上仍不尽人意。因此,亟须寻求一种可有效弥补上述缺陷的新型沥青改性剂。聚氨酯(Polyurethane, PU)从20世纪60年代后期开始实现规模化工业生产以来,在全世界范围内已被广泛应用在涂料、密封胶、弹性体等领域。聚氨酯自身结构优势突出,使其有别于目前市场上常用的聚合物沥青改性剂。遗憾的是将聚氨酯应用于沥青改性方面的研究报道相对较少,如何进一步发掘其优点并加以充分利用,以弥补当前对高性能沥青路面的迫切需求,是道路工作者所面临的重大挑战。
    然而,近10年来,国内外的研究重点均集中于聚氨酯改性沥青制备工艺优化与混合料配合比设计,尽管已取得一定成果,但并未对其宏观性能与微细观结构之间的关联性进行深入研究。从2016年开始,部分研究者开始尝试利用生物基聚氨酯或热塑性聚氨酯再生材料对沥青进行改性,但其路用性能仍待进一步深入研究。值得强调的是,并非所有种类的沥青均适宜采用同一种改性剂和制备工艺以达到理想的改性效果,因此聚氨酯改性剂在使用前需要充分地分析其成分。此外,聚氨酯改性沥青尚缺乏一套系统科学的评价体系。
    截至目前,国内外在该领域取得的主要研究成果如下:(1)聚氨酯中的异氰酸根可改善沥青的硬度及弹性;(2)聚氨酯与传统聚合物改性剂或纳米材料复配改性沥青的制备方法为剪切共混法,剪切时间与剪切速率对改性沥青性能的影响较小,剪切温度对聚氨酯改性沥青高温、低温性能与弹性恢复的影响较大;(3)从宏观性能和微观结构两个角度解释了聚氨酯改性沥青的相容性和力学性能优异的原因;(4)聚氨酯改性剂的粒径对沥青乳化以及发泡程度有重要影响;(5)混合料优化设计研究发现,聚氨酯改性沥青混合料除水稳性能外的其他性能均超过规范中规定的技术要求;(6)生物基聚氨酯、热塑性聚氨酯再生材料等均可以提升沥青的性能。
    本文主要归纳了聚氨酯作为改性剂对沥青进行改性的研究进展,包括聚氨酯材料的概述及选择、聚氨酯改性沥青的改性机理、聚氨酯改性沥青的流变和微观特性,并分别从防水工程、路用工程、生物基与可循环再利用三个方面概述了聚氨酯改性沥青的应用。最后,提出目前聚氨酯改性沥青研究中存在的问题,同时对聚氨酯改性沥青的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
金鑫
郭乃胜
尤占平
谭忆秋
关键词:  改性沥青  聚氨酯  聚合物  弹性体    
Abstract: Since the emergence of polymer modified asphalt materials, its function and preparation technology have been continuously optimized, the polymer modified asphalt have achieved remarkable results in improving the traffic comfort and prolonging the service life of asphalt pavement. Although polymer modified asphalt have been developed for nearly 100 years, the production, storage and performance of traditional polymer modified asphalt are still unsatisfactory. Therefore, it is urgent to find a new asphalt modifier which can effectively make up for the deficiencies mentioned above. Polyurethane began to implement large-scale industrial production in the late 1960s, and it has been widely used in coating, sealant, elastomer and other fields all over the world. Based on the outstanding advantages in structural, polyurethane is obviously different from other polymer modifiers used in the market. Unfortunately, few studies have been reported on the application of polyurethane in asphalt modification, how to fully explore its advantages and make use of it, so as to meet the current urgent requirement for high-performance asphalt pavement, which has become a major challenge to road workers.
    In recent ten years,the researchers at home and abroad have focused on the preparation process optimization of polyurethane modified asphalt and its mixture proportion design, and some achievements have been made, but the relationship between the microscopic structure of asphalt and the macroscopic performance of asphalt has not been investigated. Since 2016, some researchers have started to explore the modification of asphalt by using biological polyurethane or thermoplastic regenerated polyurethane, the road performance of it need to be further verified. It's worth noticing that, not all kinds of asphalt can use the same polymer modifier and preparation process to achieve the same modification effect. The modification effect of polymer modifier is not only related to the composition of asphalt, but affected by the amount of modifier added. Additionally, there is a lack of a systematic and scientific evaluation system for polyurethane modified asphalt.
    Until now, the research results can be summarized as follows. (ⅰ) Isocyanates can effectively improve the hardness and elasticity of asphalt; (ⅱ) polyurethane can be combined with traditional polymer modifier or nanomaterials to modify polyurethane modified asphalt, which was prepared by shear method, and then the shear time and shear rate show little influence on the performance of modified asphalt, and the shear temperature perform great influence on the high and low temperature performance and elastic recovery of modified asphalt; (ⅲ) the reasons of good compatibility and mechanical properties of polyurethane modified asphalt were explained from macroscopic properties and microscopic properties, (ⅳ) the particle size of polyurethane modifier has important influence on emulsification and foaming degree of asphalt; (ⅴ) in the optimization design of asphalt mixture, it was found that road performance of polyurethane modified asphalt mixture far exceed the technical requirements specified in the specification, except water stability; (ⅵ) the creep flexibility of castor oil-based polyurethane modified asphalt decreased significantly compared with that of matrix asphalt, and the addition of modifier played a toughening and strengthening role. The properties of asphalt can be improved by using biologic polyurethane and thermoplastic polyurethane regenerated materials.
    This review mainly summarizes a retrospection of the research efforts with respect to the polyurethane modified asphalt, including the characte-ristics of polyurethane, the selection of polyurethane modifier, the modification mechanism of polyurethane modified asphalt, the rheological and microscopic properties of polyurethane modified asphalt, practical use of polyurethane modified asphalt is reviewed from waterproofing enginee-ring, road engineering, biomaterials and recycling. Finally, the existing problems in the present research are put forward, also, the future deve-lopment of polyurethane modified asphalt is presented.
Key words:  modified asphalt    polyurethane    polymer    elastomer
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  U414  
基金资助: 国家自然科学基金(51308084);中央高校基本科研业务费专项资金(3132017029);辽宁省自然科学基金(20180550173)
作者简介:  金鑫,2014年3月毕业于沈阳化工大学,获得理学硕士学位。现为大连海事大学交通运输学院博士研究生,在郭乃胜教授的指导下进行研究。目前主要从事聚合物改性沥青的研究。
    郭乃胜,2007年3月份毕业于大连海事大学,获得工学博士学位。2009—2012年在哈尔滨工业大学进行博士后研究工作,2013—2014年在美国密歇根理工大学作访问学者。现任大连海事大学交通运输工程学院教授。研究方向为沥青与沥青混合料,近年来在国内外学术期刊发表学术论文60余篇,其中SCI、EI检索30余篇。
引用本文:    
金鑫, 郭乃胜, 尤占平, 谭忆秋. 聚氨酯改性沥青研究现状及发展趋势[J]. 材料导报, 2019, 33(21): 3686-3694.
JIN Xin, GUO Naisheng, YOU Zhanping, TAN Yiqiu. Research and Development Trends of Polyurethane Modified Asphalt. Materials Reports, 2019, 33(21): 3686-3694.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090011  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3686
1 Mai C Q, Zhang R H, Huang J C, et al. Journal of China & Foreign Highway, 2012, 32(3),332 (in Chinese).
麦灿强, 张荣辉, 黄健超, 等. 中外公路, 2012, 32(3),332.
2 Ding L M. Study on the modification and application of asphalt mixture by SBS. Master's Thesis, Tongji University, China, 2007 (in Chinese).
丁烈梅. SBS改性沥青混合料在道路施工中的应用研究. 硕士学位论文, 同济大学, 2007.
3 Tian H T. Research on road performance and applications of high elastic modified asphalt mixture.Master's Thesis, Shandong University, China, 2010 (in Chinese).
田辉腾. 高弹性改性沥青混合料的路用性能与应用研究. 硕士学位论文, 山东大学, 2010.
4 Ministry of Transport of the People's Republic of China. Tehnical Specifications for Construction of Highway Asphalt Pavements, People's Transportation Press, 2005 (in Chinese).
中华人民共和国交通部. 公路改性沥青路面施工技术规范(JTG F40-2004), 人民交通出版社, 2005.
5 Lesueur D. Advances in Colloid and Interface Science, 2009, 145(1-2),42.
6 Lewandowski L H.Rubber Chemistry and Technology, 1994, 67,447.
7 Fawcett A H, Mcnally T M.Journal of Applied Polymer Science, 2000, 76,586.
8 Zhang R H, Zeng Z H, Li Y.New Building Materials, 2010, 37(5),63 (in Chinese).
张荣辉, 曾志煌, 李毅. 新型建筑材料, 2010, 37(5),63.
9 Lyu H Q, Zhang X W, Zhang R H, et al. New Building Materials, 2010, 37(6),20 (in Chinese).
吕惠卿, 张湘伟, 张荣辉, 等. 新型建筑材料, 2010, 37(6),20.
10 Zhou A J, Li C C, Li S G. Chian Synthetic Fiber Industry, 2013, 36(2),46 (in Chinese).
周爱军, 李长存, 黎树根. 合成纤维工业, 2013, 36(2),46.
11 Buist J M. Development of polyurethane. Translation by Lv S X.Nanjing institute of Chemical Technology Press, 1986 (in Chinese).
Buist J M. 聚氨酯发展. 吕槊贤译, 南京化工学院出版社, 1986.
12 Chen T K, Tien Y I, Wei K H. Polymer, 2000, 41,1345.
13 Baral D, De P P, Nando G B. Polymer Degradation and Stability, 1999, 65(1),47.
14 Piotr Król. Progress in Materials Science, 2007, 52(6),915.
15 Xu P L, Zhang S Q. Manual of polyurethane materials, Chemical Industry Press, 2011 (in Chinese).
徐培林, 张淑琴. 聚氨酯材料手册, 化学工业出版社, 2011.
16 Liu Y J. Manual on polyurethane raw materials and auxiliaries (second edition), Chemical Industry Press, 2012 (in Chinese).
刘益军.聚氨酯原料及助剂手册(第二版), 化学工业出版社, 2012.
17 Merino D H, Driscoll B O, Harris P J, et al.Polymer Chemstry, 2018, 9,3406.
18 Liu X Y, Gu L L, Li J.Polyurethane Industry, 2004(1),6 (in Chinese).
刘晓燕, 顾林玲, 李娟. 聚氨酯工业, 2004(1),6.
19 Li W B, Zhou C, Cao C B, et al.Chinese Journal of Biomedical Enginee-ring, 2011, 30(1),130(in Chinese).
李文波, 周晨, 曹成波, 等. 中国生物医学工程学报, 2011, 30(1),130.
20 Gao W T, Bie M Y, Quan Y W.Polymer, 2018, 151,27.
21 Liu H, Dong M Y, Huang W J, et al.Journal of Materials Chemstry C, 2017, 5,73.
22 Janik H, Marzec M.Materials Science and Engineering: C, 2015, 48,586.
23 Petrovi Z S, Ferguson F. Progress in Science, 1991, 5(16),695.
24 Li W. Mechanical Management and Development, 2007(6),3(in Chinese).
李伟. 机械管理开发, 2007(6),3.
25 Liu H J. Manual on polyurethane elastomers (second edition), Chemical Industry Press, 2012 (in Chinese).
刘厚钧.聚氨酯弹性体手册(第二版), 化学工业出版社, 2012.
26 Anna K, Rogulska M, Gluchowska H.Polymer International, 2011,60, 652.
27 Hao P W.Petroleum Processing and Petrochemicals, 2001(3), 54 (in Chinese).
郝培文. 石油炼制与化工, 2001(3), 54.
28 Estevez M. Journal of Cleaner Production, 2009, 17(15), 1359.
29 Emanuele B. EU patent. EP 0667374, 1995.
30 余建平, 丁海涛, 余浩. 中国专利, CN 104119941A, 2014.
31 Yu R E. Preparation and properties of asphalt modified with graphene oxide/polyurethane composite. Ph.D. Thesis,Xi'an University of Techno-logy, China, 2016 (in Chinese).
于瑞恩.氧化石墨烯/聚氨酯复配改性沥青的制备和性能研究. 博士学位论文, 西安理工大学, 2016.
32 Lu X, Isacsson U. Polym Testing, 2001, 20(1), 77.
33 Corbett.Analtical Chemistry, 1969, 41(4),576.
34 Liao K J, Cong Y F. The production and application technology of asphalt pavement, Chemical Industry Press, China,2004 (in Chinese).
廖克俭, 丛玉凤. 道路沥青生产与应用技术, 化学工业出版社, 2004.
35 Claudy P, Letoffe J M, King G N, et al. Fuel Science and Technology International, 1992, 10(4-6),735.
36 Koots J A, Speight J G. Fuel, 1975, 54(3), 179.
37 Tan Y Q. Bitumen and bituminous mixture, Harbin Institute of Technology Press, China,2007 (in Chinese).
谭忆秋.沥青与沥青混合料, 哈尔滨工业大学出版社, 2007.
38 Lesueur D. Advances in Colloid and Interface Science, 2009, 145(1-2), 42.
39 Mortazav M I, Moulthrop J S. SHRP materials reference library(SHRP report A-646). Washington D. C. , National Research Council, 1993.
40 Branthaver J F, Petersen J C, Robertson R E, et al. Binder characterization and evaluation (SHRP Report A-368). Washington D. C., National Research Council, 1994.
41 Partal F P, Martínez-Boza J. 3-Modification of bitumen using polyurethanes, Polymer Modified Bitumen, 2011,pp. 43.
42 Chen D J, Li Y J.Chemical Journal of Chinese Universities, 2001(5),0844 (in Chinese).
陈大俊, 李瑶君.高等学校化学学报, 2001(5),0844.
43 Zhao X B, Du L, Zhang X P, et al.Polymer Materials Science & Engineering, 2002(2), 1 (in Chinese).
赵孝彬, 杜磊, 张小平, 等.高分子材料科学与工程, 2002(2), 1.
44 Sengoz B, Isikyakar G. Journal of Hazardous Materials, 2008, 150(2), 424.
45 Fang C Q, Li T H, Zheng C Z, et al.Materials Review, 2006(8),55 (in Chinese).
方长青, 李铁虎, 郑长征, 等. 材料导报, 2006(8), 55.
46 Yusoff N M, Hainin M R, Airey G D. Binder Characterization and Evalua-tion, (SHARP-A-370). Washington D. C. , National Research Council, 1994.
47 Anderson D A, Kennedy T W. Journal of the Association of Asphalt Paving Technologists, 1992, 61, 67.
48 Christensen D W.Binder characterization and evaluation (SHRPA-369). Washington D. C. , National Research Council, 1994.
49 Lu X,Isacsson U. Journal of Applied Polymer Science, 2000, 76(12),1811.
50 Wang X T.Petroleum Asphalt, 2007(3),8 (in Chinese).
王锡通. 石油沥青, 2007(3),8.
51 Im J H, Kim Y R, Yang S L.International Journal of Highway Enginee-ring, 2014, 16(5),1.
52 Carrera V, Cuadri A A, García-Morales M, et al. European Polymer Journal, 2014, 57,151.
53 Singh B, Tarannum H, Gupta M. Journal of Applied Polymer Science, 2003, 90(5),1365.
54 Zeng L H, Wei J G, Hou J N, et al. Journal of Changsha University of Science and Technology (Natural Science), 2017, 14(4),24 (in Chinese).
曾俐豪, 魏建国, 侯剑楠, 等. 长沙理工大学学报(自然科学版), 2017, 14(4),24.
55 Xia L, Zhang H Y, Cao D W, et al.Journal of Highway and Transportation Research and Development, 2016, 33(10),13 (in Chinese).
夏磊, 张海燕, 曹东伟, 等. 公路交通科技, 2016, 33(10),13.
56 Bahia H U,Anderson D A, Christensen D W. Association of Asphalt Paving Technologists, 1992, 61,117.
57 Sun D Q.Study on the compatibility of SBS modified asphalt and its engineering properties. Ph.D. Thesis, Tongji University, China, 2003 (in Chinese).
孙大权. SBS改性沥青相容性及其工程性质的研究. 博士学位论文, 同济大学, 2003.
58 Anderson R M, Walker D E, Turner P A. Transportation Research Board Record, 1999, 1661, 69.
59 Hoare T R, Hesp S M.Transportation Research Board Record, 2000, 1728,36.
60 Fan T, Lin S N, Yin Y M, et al.New Building Materials, 2016, 43(11),83(in Chinese).
范腾, 林思能, 尹应梅, 等. 新型建筑材料, 2016, 43(11),83.
61 Bahia H, Zhai H, Rangel A. Transportation Research Board Record, 2000, 1638,64.
62 Bu X D, Cheng F L. Highway, 2016, 61(8),171 (in Chinese).
卜鑫德, 程烽雷. 公路, 2016, 61(8),171.
63 Su R. Research on the performance of polyurethane modified asphalt and its mixture. Master's Thesis, Beijing University of Civil Engineering and Architecture, China, 2016 (in Chinese).
舒睿. 聚氨酯改性沥青及其混合料的性能研究. 硕士学文论文, 北京建筑大学, 2016.
64 Breen J J,Stephen J E. Association of Asphalt Paving Technologists, 1969, 38,40, 706.
65 Richman W B. Journal of the Association of Asphalt Paving Technologists, 1967, 106.
66 Wang Y, Shi Y F, Li X X. Polyurethane Industry, 2006, 21(6),44 (in Chinese).
王艳, 史玉芳, 李祥新.聚氨酯工业, 2006, 21(6),44.
67 Jeics P W. Report FHWA/MT-82/001, Montana Department of Highway, Helena,1992.
68 Glover C J.Transportation Research Board Record, 1988, 1171,71.
69 Zenewitz J A,Tran K T. Public Road, 1987, 51(3), 72.
70 Garrick N W, Wood L E. Association of Asphalt Paving Technologists, 1988, 57,26.
71 Wahhab H I, Asi I M, Dubabi I A, et al. Journal of Materials In Civil Engineerring, 1999, 11(1), 6.
72 Li Y Z. Thermal analysis. Tsinghua University Press,1987 (in Chinese).
李余增. 热分析, 清华大学出版社, 1987.
73 Jin R G, Hua Y Q. Polymer physics (third edition), Chemical Industry Press, 2006 (in Chinese).
金日光, 华幼卿.高分子物理(第三版), 化学工业出版社, 2006.
74 Peng Z P, Chen S J, Liu P S.Polymer Materials Science & Engineering, 2005(4), 175(in Chinese).
彭志平, 陈少军, 刘朋生. 高分子材料科学与工程, 2005(4), 175.
75 Liu S T.Study on the application of infrared thermal imaging detection technology in the process of controlling the quality of asphalt pavement construction. Master's Thesis, Chang'an University, China, 2013 (in Chinese).
刘书堂. 红外热成像检测技术在沥青路面施工质量控制中的应用研究. 硕士学位论文, 长安大学, 2013.
76 Han J C.Manufacturing and Study on properties of polyurethane(PU) modified bitumen emulsions. Master's Thesis, Chang'an University,China, 2017 (in Chinese).
韩继成.聚氨酯(PU)改性乳化沥青制备及性能研究. 硕士学位论文, 长安大学, 2017.
77 Ma Y, He Z Y, He L, et al. Journal of Highway and Transportation Research and Development, 2015, 32(1), 13 (in Chinese).
马育, 何兆益, 何亮, 等. 公路交通科技, 2015, 32(1), 13.
78 Li W G, Duan Y H, Yan L K, et al.Petroleum Asphalt, 2012, 26(4),9 (in Chinese).
李炜光, 段炎红, 颜录科, 等. 石油沥青, 2012, 26(4), 9.
79 Petersen J C,Harnsberger P. Transportation Research Board Record, 1998, 1638,47.
80 Izquierdo M A, Navarro F J, Martínez-Boza F J, et al. Construction and Building Materials, 2012, 30, 706.
81 Bukowski A, Gretkiewicz J. Journal of Applied Polymer Science, 1982, 27 (4), 1197.
82 Lucke H. US patent, US 4871792A, 1987.
83 Terry C E, Berard R A, Pinholster D F. US patent, US 5981010A, 1999.
84 Yu J P. In:Conference Record of the 2000 China Civil Engineering Society Municipal Engineering Branch. Xi'an, 2000, pp. 546.
85 Wang C A, Wu Y L, Xu K, et al. Chemical Materials for Construction, 2004(6),36(in Chinese).
王长安, 吴育良, 许凯, 等. 化学建材, 2004(6), 36.
86 Singh B, Gupta M, Kumar L. Journal of Applied Polymer Science, 2006, 101(1),217.
87 盛基泰, 张昊, 吴士超. 中国专利, CN 102585144 B, 2013.
88 刘拥军. 中国专利, CN 108099306A, 2018.
89 Zhang H L, Yao R F, Lou W Y.Journal of Building Materials, 2009, 12(3), 292 (in Chinese).
张慧莉, 姚汝方, 雒望余. 建筑材料学报, 2009, 12(3),292.
90 Carrera V, Partal P, Garciamorales M, et al.Industrial and Engineering Chemistry Research, 2009, 48(18), 8464.
91 Carrera V, Partal P, García-Morales M, et al. Fuel Processing Technology, 2010, 91(9), 1139.
92 张昊, 吴世超, 盛基泰, 等.中国专利, CN 102464892 A, 2012.
93 胡良宏, 姜海虎, 王清和. 中国专利, CN 105038686A, 2015.
94 Carrera V, Cuadri A A, García-Morales M, et al. Materials and Structures, 2015, 48(10), 3407.
95 Moran L E. U.S. patent. US 5070123A, 1991.
96 翟洪金, 应军, 郑磊. 中国专利, CN 102850506 A, 2013.
97 张昊, 涂松, 盛基泰, 等.中国专利, CN 103102706 A, 2013.
98 Chen L D, Li L, Hao Z H.Highway Engineering, 2013, 38(2), 214 (in Chinese).
陈利东, 李璐, 郝增恒. 公路工程, 2013, 38(2), 214.
99 翟洪金, 应军, 郑磊. 中国专利, CN 102850506A, 2013.
100 李璐, 盛兴跃, 郝增恒. 中国专利, CN 103232717A, 2013.
101 Hicks R, Dussek L, Seim C.Transportation Research Record, 2014, 1740(17), 135.
102 曹东伟, 张艳君, 靳明洋, 等. 中国专利, CN 105016655A, 2015.
103 Liu Y, Xin X. Journal of China & Foreign Highway, 2015, 35(5), 255 (in Chinese).
刘颖, 辛星. 中外公路, 2015, 35(5), 255.
104 Liu Y, Xin X. Petroleum Asphalt, 2015, 29(1), 48 (in Chinese).
刘颖, 辛星. 石油沥青, 2015, 29(1),48.
105 Su R, Zhang H Y, Cao D W, et al. Journal of Guizhou University of Finance and Economics, 2015, 11(12), 142 (in Chinese).
舒睿, 张海燕, 曹东伟, 等. 公路交通科技(应用技术版), 2015, 11(12),142.
106 樊现孔, 张柯. 中国专利, CN 105885440A, 2016.
107 Zeng B G.Hunan Communication Science and Technology, 2017, 43(1),70 (in Chinese).
曾保国. 湖南交通科技, 2017, 43(1),70.
108 Li C X.Journal of Wuhan University of Technology (Traffic Science & Engineering), 2017, 41(6), 958 (in Chinese).
李彩霞. 武汉理工大学学报(交通科学与工程版), 2017, 41(6), 958.
109 Ban X Y. Study on preparation and properties of polyurethane (PU) modified asphalt. Master's Thesis, Chang'an University, China, 2017 (in Chinese).
班孝义.聚氨酯(PU)改性沥青的制备与性能研究. 硕士学位论文, 长安大学, 2017.
110 Cuadri A A, Garcia M M, Navarro F J, et al.Fuel, 2014, 118,83.
111 Cao D W, Zhang H Y, Xia L, et al.C.N. patent application, CN 106146775A, 2016.
112 Poulikakos L D, Papadaskalopoulou C, Hofko B, et al.Resources Conservation and Recycling, 2017, 116,32.
113 Padhan R K, Gupta A A.Construction and Building Materials, 2018, 158 (15),337.
[1] 马攀龙, 张忠厚, 韩琳, 陈荣源. 交联剂和无纺布增强聚丙烯腈凝胶聚合物电解质膜的研究[J]. 材料导报, 2019, 33(z1): 457-461.
[2] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[3] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[4] 路小彬. 基于嵌段共聚物的硅表面聚合物刷点阵组装[J]. 材料导报, 2019, 33(z1): 505-509.
[5] 刘国军, 张生义, 钟明月, 张桂霞, 王艳, 余大平. BEM含量对MAA-EA-MMA共聚物乳液的pH响应性研究[J]. 材料导报, 2019, 33(8): 1422-1426.
[6] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[7] 王岚, 李冀, 桂婉妹. 表面活性剂对温拌胶粉改性沥青高低温性能的影响[J]. 材料导报, 2019, 33(6): 986-990.
[8] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[9] 朱继红, 曾碧榕, 罗伟昂, 袁丛辉, 陈凌南, 毛杰, 戴李宗. Fe3O4@P(St-co-OBEG)核壳结构微球负载银/铂纳米粒子复合催化剂的构筑及催化性能[J]. 材料导报, 2019, 33(4): 571-576.
[10] 翟乐, 吉海峰, 姚艳梅, 瞿雄伟. 利用聚丙烯酸正丁酯@聚甲基丙烯酸甲酯核/壳结构聚合物增韧氰酸酯树脂[J]. 材料导报, 2019, 33(4): 705-708.
[11] 岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
[12] 魏波,周金堂,姚正军,钱逸,钱崑. 环氧树脂基体的原位增韧技术研究进展[J]. 材料导报, 2019, 33(17): 2976-2988.
[13] 王玉龙, 侯立杰, 刘志勇, 李世宇, 李卓辉. 水性聚氨酯改性环氧树脂乳液的涂膜性能研究[J]. 材料导报, 2019, 33(14): 2456-2460.
[14] 王岚, 崔世超, 常春清. 基于流变学与黏弹性理论的温拌胶粉改性沥青的高温性能研究[J]. 材料导报, 2019, 33(14): 2386-2391.
[15] 马骁, 谢雪鹏, 叶雄伟, 何巨鹏, 朱杰. 基于氮气吸附法的钙基地聚合物孔隙结构分形特征[J]. 材料导报, 2019, 33(12): 1989-1994.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed