Please wait a minute...
材料导报  2019, Vol. 33 Issue (21): 3580-3587    https://doi.org/10.11896/cldb.18090277
  无机非金属及其复合材料 |
可拉伸超级电容器碳基复合电极材料的研究进展
岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文
天津工业大学环境与化学工程学院, 天津 300387
Research Progress of Carbon-based Composite Electrode MaterialsUsed for Stretchable Supercapacitors
YUE Ruirui, WANG Huicai, LIU Xiaping, YANG Jibin, WANG Zhenwen
School of Environmental and Chemistry Engineering, Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 23627KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着便携式和可穿戴电子产品的发展,人们对柔性储能设备的需求越来越迫切。常用的储能设备有锂离子电池、超级电容器等。与锂离子电池相比,超级电容器具有更快的充放电速度、更高的循环稳定性能和更大的比电容等优点。但传统的超级电容器在受到拉伸、压缩等外力作用时,存储功能难免下降甚至丧失。因此,可拉伸超级电容器引起了研究者们的关注。
    电极是可拉伸超级电容器的重要组成部分,人们通过制备性能优异的电极材料或设计能够抗压缩、拉伸、扭曲等高强度机械力的电极结构来提高电极的电化学性能和力学性能。碳纳米管、石墨烯、碳纤维和碳气凝胶等碳材料属于双电层电容器电极材料,它们虽然比表面积大、循环稳定性强,但仍存在低比电容、低能量密度等缺点。其中,石墨烯更是面临因堆叠团聚而导致的储能性能降低的问题。于是,人们在将碳材料与其他电极材料结合制备碳基可拉伸复合电极材料方面做了许多尝试。高比电容的赝电容电极材料、大比表面积的过渡金属硫化物或高导电性的金属纳米线,都已被发现能够与某些碳材料产生协同互补,形成的碳基复合电极在比电容、循环稳定性和力学性能方面相比单种碳电极材料有明显提高。
    本文在对比介绍用作可拉伸超级电容器的各种碳材料的优势与不足的基础上,综述了近年来广泛应用于可拉伸超级电容器的碳基复合电极材料的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳瑞瑞
王会才
刘霞平
杨继斌
汪振文
关键词:  碳材料  复合材料  可拉伸超级电容器  过渡金属氧化物  导电聚合物    
Abstract: The emergence of portable and wearable electronic products is now spurring the demands for flexible energy storage devices. The prevailing energy storage devices are Li-ion batteries and supercapacitors, in which the latter have the advantages of faster charging/discharging, higher cycle stability and larger specific capacitance. However, traditional supercapacitors will suffer a storage capacity fall if they are subjected to external forces such as stretching and compressing. Thus stretchable supercapacitors have already aroused great concern.
    Electrode is a critical part of stretchable supercapacitors. The electrochemical and mechanical properties of electrodes can be improved by preparing electrode materials with excellent properties or designing electrode structures adapted or resistant to severe mechanical forces, e.g. compression, tension and torsion. Carbon materials such as carbon nanotubes, graphene, carbon fibers and carbon aerogels belong to electric double-layer electrode materials. Although these materials have high cyclic stability and large surface area, they still have disadvantages such as low specific capacitance and low energy density. Moreover, graphene faces the problem of deficient energy storage performance induced by stacking and agglomeration. The fabrication of carbon-based composite electrode materials, by combining carbon materials with other types of electrode materials, thereby has become a hot topic recently. Pseudocapacitor electrode materials with high specific capacitance, transition metal sulphides with high specific surface area, and metal nanowires with high electrical conductivity, all of them have been found to have collaborative & complementary effects with some of the carbon materials. And the resultant stretchable composite electrodes, compared with electrodes made of only carbon materials, seem to have obvious improvements in specific capacitance, cyclic stability and mechanical properties.
    This paper gives a comparative presentation of the advantages and disadvantages of various carbon materials in use of stretchable supercapacitors. Then, the advances in carbon-based composite electrode materials that have acquired intensive research interest in recent years are reviewed.
Key words:  carbon material    composites    stretchable supercapacitors    transition metal oxides    conducting polymer
               出版日期:  2019-11-10      发布日期:  2019-09-12
ZTFLH:  TB33  
作者简介:  岳瑞瑞,2017年6月毕业于安徽师范大学,获得工学学士学位。现为天津工业大学环境与化学工程学院硕士研究生,在王会才副教授的指导下进行研究。目前主要研究领域为电化学。
    王会才,天津工业大学化学与化工学院副教授、硕士研究生导师。2001年7月本科毕业于长春工程学院,2007年9月在浙江大学高分子化学与物理专业取得博士学位,2007—2010年在南开大学进行博士后研究工作,2013年入选天津市“131”创新型人才培养工程第三层次,并入选天津市高校“优秀青年教师资助计划”,2017年入选天津市高校“中青年骨干创新人才培养计划”,2017—2018年在牛津大学访问。主要从事功能材料及其在电化学检测、新能源材料以及环境领域中的应用研究工作。近年来,发表论文30余篇,授权发明专利6项,包括Biosensor & Bioelectronics、Sensors and Actuators B: Chemical、Talanta、Electrochimica Acta、Chemical Engineering Journal等。
引用本文:    
岳瑞瑞, 王会才, 刘霞平, 杨继斌, 汪振文. 可拉伸超级电容器碳基复合电极材料的研究进展[J]. 材料导报, 2019, 33(21): 3580-3587.
YUE Ruirui, WANG Huicai, LIU Xiaping, YANG Jibin, WANG Zhenwen. Research Progress of Carbon-based Composite Electrode MaterialsUsed for Stretchable Supercapacitors. Materials Reports, 2019, 33(21): 3580-3587.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090277  或          http://www.mater-rep.com/CN/Y2019/V33/I21/3580
1 Pandolfo A G, Hollenkamp A F. Journal of Power Sources, 2006,157(1), 11.
2 Wang G L, Zhang L, Zhang J J. Chemical Society Reviews, 2012,41(2), 797.
3 Zhang L L, Zhao X S. Chemical Society Reviews, 2009,38(9), 2520.
4 Li X, Wei B. Nano Energy, 2013,2(2), 159.
5 Chen T, Dai L M. Journal of Materials Chemistry A, 2014,2(28), 10756.
6 Sekitani T, Someya T. Advanced Materials, 2010,22(20), 2228.
7 Xie K Y, Wei B Q. Advanced Materials, 2014,26(22), 3592.
8 de Volder, Michael F L, Sameh H T, et al. Science, 2013,339(6119), 535.
9 Bonaccorso F, Luigi C, Yu G H, et al. Science, 2015,347(6217), 1246501.
10 Chen H Q, Marc B M, Kerry J G, et al. Advanced Materials, 2008,20(18), 3557.
11 Elazari R, Salitra G, Garsuch A, et al. Advanced Materials, 2011,23(47), 5641.
12 Lee Y R, Kwon H, Lee D H, et al. Soft Matter, 2017,13(37), 6390.
13 Zhu W J, Zhang Y, Zhou X S, et al. Nanoscale Research Letters, 2017,12(1), 448.
14 Yu C J, Masarapu C, Rong J P, et al. Advanced Materials, 2009,21(47), 4793.
15 Zang J F, Cao C Y, Feng Y Y, et al. Scientific Reports, 2014,4, 6492.
16 Yun T G, Hwang B, Kim D, et al. ACS Applied Materials Interfaces, 2015,7(17), 9228.
17 Ma L, Liu R, Niu H J, et al. Electrochimica Acta, 2016,222, 429.
18 Li K, Zhang J. Science China Materials, 2017,61(2), 210.
19 Li J S, Lu W B, Yan Y S. Journal of Materials Chemistry A, 2017,5(22), 11271.
20 Yuksel R, Sarioba Z, Cirpan A, et al. ACS Applied Material Interfaces, 2014,6(17),15434.
21 Yu M H, Zhang Y F, Zeng Y X, et al. Advanced Materials, 2014,26(27), 4724.
22 Shin S R, Farzad R, Tamayol A, et al. Advanced Materials, 2016,28(17), 3280.
23 Lee J, Kim Wonbin, Kim Woong. ACS Applied Material Interfaces, 2014,6(16), 13578.
24 Chen T, Peng H S, Durstoc M, et al. Scientific Reports, 2014,4, 3612.
25 Xu P, Gu T L, Cao Z Y, et al.Advanced Energy Materials, 2014,4, 1300759.
26 Zhang Y, Bai W Y, Cheng X L, et al.Angewandte Chemie, 2014,126, 1.
27 Moussa M, Shi G, Wu H, et al. Materials & Design, 2017,125, 1.
28 Xie Y Z, Liu Y, Zhao Y D, et al. Journal of Materials Chemistry, 2014,2(24), 9142.
29 Yu G H, Hu L B, Liu N, et al. Nano Letters, 2011,11(10), 4438.
30 Zhang M, Liu Y H, Hu M L, et al. Electrochimica Acta, 2017,256, 44.
31 Hong J Y, Kim W, Choi D, et al. ACS Nano, 2016,10, 9446.
32 Lamberti A, Clerici F, Fontana M, et al. Advanced Energy Materials, 2016,6(10), 1600050.
33 Lu W B, Zu M, Byun J H, et al. Advanced Materials, 2012,24(14), 1805.
34 Yu J L, Wang L Y, Lai X H, et al. Carbon, 2015,94, 352.
35 Zhou C J, Yang Y Q, Sun N, et al. Nano Research, 2018,11(8), 4313.
36 Lu Z, Foroughi J, Wang C Y, et al. Advanced Energy Materials, 2018,8(8), 1702047.
37 Xu Y X, Chen C Y, Zhao Z P, et al. Nano Letters, 2015,15(7), 4605.
38 Zhou G H, Kim N R, Chun S E, et al. Carbon, 2018,130, 137.
39 Chen X L, Qiu L B, Guan G Z, et al. Advanced Materials, 2013,25(44), 6436.
40 Yang Z B, Deng J, Chen X L, et al. Angewandte Chemie International Edition, 2013,52(50), 13453.
41 Zhang Z T, Deng J, Li X Y, et al. Advanced Materials, 2015,27(2), 356.
42 Lyu Z S, Luo Y F, Tang Y X, et al. Advanced Materials, 2018,30(2), 1704531.
43 Gu T L, Wei B Q. Journal of Materials Chemistry A, 2016,4(31), 12289.
44 Lee D W, Lee J H, Min N K, et al. Scientific Reports, 2017,7(1), 12005.
45 Li P P, Jin Z Y, Peng L L, et al. Advanced Materials, 2018,30(18), 1800124.
46 Yu J L, Lu W B, Pei S P, et al. ACS Nano, 2016,10(5), 5204.
47 Sun J F, Huang Y, Fu C X, et al. Nano Energy, 2016,27, 230.
48 Radisavljevic B, Radenovic A, Brivio J, et al. Nature Nanotechnology, 2011,6(3), 147.
49 Sun G Z, Zhang X, Lin R Z, et al. Angewandte Chemie International Edition, 2015,54(15), 4651.
50 Lyu T, Yao Y, Li N, et al. Angewandte Chemie International Edition, 2016,55(32), 9191.
51 Wu X D, Han Y Y, Zhang X X, et al. ACS Applied Material Interfaces, 2017,9(27), 23007.
[1] 洪起虎, 燕绍九, 陈翔, 李秀辉, 舒小勇, 吴廷光. GO添加量对RGO/Cu复合材料组织与性能的影响[J]. 材料导报, 2019, 33(z1): 62-66.
[2] 丁晓飞, 范同祥. 石墨烯增强铜基复合材料的研究进展[J]. 材料导报, 2019, 33(z1): 67-73.
[3] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[4] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[5] 周春波, 张有智, 张岳, 王煊军. 聚乙烯基石墨烯复合多孔球形材料的制备及性能表征[J]. 材料导报, 2019, 33(z1): 453-456.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 罗继永, 张道海, 田琴, 魏柯, 周密, 杨胜都. 无机纳米粒子协同无卤阻燃聚丙烯的研究进展[J]. 材料导报, 2019, 33(z1): 499-504.
[8] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[9] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[10] 余江滔, 田力康, 王义超, 刘柯柯. 具有超高延性的再生微粉水泥基复合材料的力学性能[J]. 材料导报, 2019, 33(8): 1328-1334.
[11] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[12] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[13] 王鸣, 黄海旭, 齐鹏涛, 刘磊, 王学雷, 杨绍斌. 还原氧化石墨烯(RGO)/硅复合材料的制备及用作锂离子电池负极的电化学性能[J]. 材料导报, 2019, 33(6): 927-931.
[14] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[15] 郭帅, 焦学健, 李丽君, 董抒华, 孙丰山, 单海瑞. 近场动力学方法研究复合材料失效的进展[J]. 材料导报, 2019, 33(5): 826-833.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[4] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] GUO Hongjian, JIA Junhong, ZHANG Zhenyu, LIANG Bunu, CHEN Wenyuan, LI Bo, WANG Jianyi. Microstructure and Tribological Properties of VN/Ag Films Fabricated by Pulsed Laser Deposition Technique[J]. Materials Reports, 2017, 31(2): 55 -59 .
[7] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
[10] TAN Cao, DUAN Hongjuan, WANG Junkai, ZHANG Haijun, LIU Jianghao. Preparation of ZrB2 Ultrafine Powders via Molten-salt-mediated Magnesiothermic Reduction[J]. Materials Reports, 2017, 31(8): 109 -112 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed