Please wait a minute...
材料导报  2019, Vol. 33 Issue (8): 1302-1306    https://doi.org/10.11896/cldb.19010181
  无机非金属及其复合材料 |
玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能
李茂源1,2, 卢林2, 戴珍2, 洪义强2, 陈为为3, 张玉平3, 乔英杰1
1 哈尔滨工程大学材料科学与化学工程学院,哈尔滨 150001
2 北京机电工程总体设计部,北京100854
3 北京理工大学材料学院,北京 100081
Enhanced Ablation Resistance of Glass Beads and ZrB2 Modified SiO2 (f)-Phenolic Composites
LI Maoyuan1,2, LU Lin2, DAI Zhen2, HONG Yiqiang2, CHEN Weiwei3, ZHANG Yuping3, QIAO Yingjie1
1 Colleage of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001
2 Beijing System Design Institute of Electro-mechanic Engineering, Beijing 100854
3 Department of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
下载:  全 文 ( PDF ) ( 3744KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在石英/酚醛防热复合材料中引入玻璃微珠和ZrB2颗粒,旨在提高其耐冲刷、烧蚀性能。采用氧乙炔烧蚀试验测试所得石英/酚醛复合材料的耐烧蚀性能,对比分析了玻璃微珠和ZrB2颗粒对低密度和全密度石英/酚醛材料烧蚀机理和烧蚀性能的影响。结果表明,在低密度石英酚醛复合材料中掺入适量的ZrB2颗粒能使复合材料在烧蚀表面形成熔覆层,该熔覆层能有效保护碳化层及基体材料,降低线烧蚀率和质量烧蚀率。而表面熔覆层的形成与ZrO2在硅系熔融物中产生的“钉锚效应”相关,同时也与B2O3降低硅系熔融物的表面能有关。在全密度石英酚醛复合材料中引入ZrB2颗粒,可使其在烧蚀过程中形成多孔的ZrO2层,有效地将碳化层和烧蚀环境隔离。然而,ZrO2层没有熔融铺展,与碳化层结合力较弱,在烧蚀过程中容易剥落。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李茂源
卢林
戴珍
洪义强
陈为为
张玉平
乔英杰
关键词:  玻璃微珠  ZrB2颗粒  石英/酚醛复合材料  烧蚀性能    
Abstract: Glass beads and ZrB2 particles were introduced into SiO2(f)-Phenolic (S-Ph) heat resistant composite, for the sake of enhancing its erosion resistance and ablative properties. The ablation resistance of the glass beads and ZrB2 modified S-Ph composite were measured by oxygen-acetylene ablation test, and the effects of glass beads and ZrB2 particles on the ablation mechanism and ablation resistance of full-density and low-density S-Ph composites were analyzed and compared. As could be seen from the results, adding appropriate amount of ZrB2 to the low-density S-Ph composites contributed to the formation of a cladding layer on the ablative surface, which was highly protective to the carbide layer and the matrix material, and capable of reducing the linear ablation rate and the mass ablation rate. The formation of cladding layer on the surface was derived from the “pining-effect” produced by ZrO2in melted silica, as well as the reduced surface energy of melted silica by B2O3. The introduction of ZrO2 particles into the full-density S-Ph composites induced the formation of porous ZrO2layer in the ablative process, which effectively isolate the carbide layer from the ablative environment. Nevertheless, the ZrO2 layer did not spread by melting and weakly adhered to the carbide layer, therefore it is apt to peel off in the ablative process.
Key words:  glass bead    ZrB2    SiO2 (f)-Phenolic composites    ablation resistance
               出版日期:  2019-04-25      发布日期:  2019-04-28
ZTFLH:  TB332  
基金资助: 国家自然科学基金青年基金(51401024)
通讯作者:  qiaoyingjie99@sina.com   
作者简介:  李茂源,研究员,哈尔滨工程大学在职博士研究生,任航天科工四院四部材料研发与装调中心副主任,从事非金属材料及RTM成型工艺技术研究工作。
引用本文:    
李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
LI Maoyuan, LU Lin, DAI Zhen, HONG Yiqiang, CHEN Weiwei, ZHANG Yuping, QIAO Yingjiei. Enhanced Ablation Resistance of Glass Beads and ZrB2 Modified SiO2 (f)-Phenolic Composites. Materials Reports, 2019, 33(8): 1302-1306.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010181  或          http://www.mater-rep.com/CN/Y2019/V33/I8/1302
1 Liu S Q, Ning P S, Ding Z M. Thermosetting Resin, 2016, 31(5), 64(in Chinese).
刘世强, 宁培森, 丁著明.热固性树脂, 2016, 31(5), 64.
2 Ma C, Ma Z, Gao L H, et al. Chinese Optics, 2017, 10(2), 249(in Chinese).
马琛, 马壮, 高丽红, 等.中国光学, 2017, 10(2), 249.
3 Yu Q C, Wang H. Journal of Inorganic Materials, 2012, 27(2), 157(in Chinese).
于庆春, 万红.无机材料学报, 2012, 27(2), 157.
4 Liu D, Wu G M, Kong Z W. Journal of Applied Polymer Science, 2017, 44342, 1.
5 Bu Z Y, Hu J J, Li B G. Thermochimica Acta, 2014, 575(10), 244.
6 Sun C M, Lu D B, Sun Y. Fiber Reinforced Plastics/Composites, 2018(10), 102(in Chinese).
孙超明, 卢东滨, 孙燚. 玻璃钢/复合材料, 2018(10), 102.
7 Bian L P, Xiao J Y, Zeng J C, et al. Materials and Design, 2014, 62, 424.
8 Maria L, Gregori Edson A, Barros Gilberto P, et al. Aerospace Science Technology, 2009, 1(1), 63.
9 Sagar S. Polymer Engineering and Science, 2014, 6, 162.
10 Xiao J, Fan H T, Zhou H T. Surface Technology, 2014, 43(2), 150(in Chinese).
肖军, 樊会涛, 周惠娣.表面技术, 2014, 43(2), 150.
11 Beaudet J, Benoit G, Cormier J, et al. Materials Sciences and Applications, 2011, 2, 1399.
12 Chen L X, Feng J J, Heng J. China patent, CN201510835808.6, 2015(in Chinese).
陈立新, 冯俊君, 衡杰, 中国专利, CN201510835808.6, 2015.
13 Sun Y, Shi L P, Zhou C L, et al. Key Engineering Materials, 2016, 697, 428.
14 Guo Z H, Tian H D, Li H, et al. In:2017 IEEE Conference on Electrical Insulation and Dielectric Phenomenon 2017.
15 Krzyzak A, Kucharczyk W, Gaska J, et al. Composite Structures, 2018, 202(15), 978.
16 Bakar M, Kucharczyk W, Stawarz S. Polymers and Polymer Composites, 2016, 24(8), 617.
17 Bakar M, Kostrzewa M, Bialkowska A, et al. High Performance Polymers, 2014, 26(3), 299.
18 Alagar M, Ashok Kumar A, Mahesh K P O, et al. European Polymer Journal, 2000, 36, 2449.
19 Kucharczyk W, Dusiński D, Zurowski W, et al. Composite Structures, 2018, 183, 654.
20 Lacroix F, Allheily V, Diener K, et al. Composite Structures, 2016, 143, 220.
21 He C, Su H, Lu W, et al. Surface Technology, 2018, 47(5), 167(in Chinese).
贺晨, 苏峘, 卢鹉, 等.表面技术, 2018, 47(5), 167.
22 Park J K, Kang T J. Carbon, 2002, 40, 2125.
23 Hong C Q, Han J C, Zhang X H, et al. Composites Part B:Engineering, 2011, 43, 2389.
24 Abdalla M O, Ludwick A, Mitchell T. Polymer, 2003, 44, 7353.
[1] 陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
[2] 樊凯,卢雪峰,吕凯明,钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed