Please wait a minute...
材料导报  2019, Vol. 33 Issue (14): 2319-2325    https://doi.org/10.11896/cldb.18050176
  无机非金属及其复合材料 |
青藏地区路用遮热涂层的制备及性能
陈玉静1,2,3, 沙爱民1,2, 胡魁3, 刘状壮1,2, 曹世豪3, 张华3
1 长安大学特殊地区公路工程教育部重点实验室,西安 710064;
2 长安大学公路学院,西安 710064;
3 河南工业大学土木建筑学院,郑州 450001
Preparation and Performance of Pavement Heat-shielding Coating for Qinghai-Tibet Area
CHEN Yujing1,2,3, SHA Aimin1,2, HU Kui3, LIU Zhuangzhuang1,2, CAO Shihao3, ZHANG Hua3
1 Key Laboratory for Special Area Highway Engineering of Ministry of Educaiton, Chang'an University, Xi'an 710064;
2 School of Highway, Chang'an University, Xi'an 710064;
3 College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450001
下载:  全 文 ( PDF ) ( 3766KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了缓解青藏地区下伏冻土由沥青路面引起的热稳定性破坏,首次提出了适用于青藏地区沥青路面的遮热涂层,通过自主设计的涂层降温性能测试装置优选了涂层的结构形式并确定了功能型材料的最佳掺量,并进一步研究了涂层的降温性能随深度的变化规律,通过摆式摩擦仪以及加速加载设备MMLS3评价了涂层的路用性能。结果表明:新型遮热涂层的优选结构形式是上层反射与下层隔热相结合的复合式遮热涂层(CHSC),降温效果能够达到12.75 ℃;CHSC涂层中反射功能型材料的最佳掺量为15%(体积浓度),隔热功能型材料的最佳掺量为10%(体积浓度);CHSC涂层可以使道路内部深度5 cm处降温9.6 ℃,使内部深度10 cm处降温6.7 ℃;当陶瓷颗粒撒布量为0.8 kg/m2时,所得涂层的抗滑系数最佳且其耐磨性能同时满足《沥青路面设计规范》的要求。因此,该研究为缓解我国青藏地区下伏冻土融化问题提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈玉静
沙爱民
胡魁
刘状壮
曹世豪
张华
关键词:  青藏地区  沥青路面  复合式遮热涂层(CHSC)  中空玻璃微珠  耐磨性能    
Abstract: In order to reduce the stability damage of the underlying permafrost caused by asphalt pavement in Qinghai-Tibet area, an original creation of heat-shielding coating (HSC) was put forward in this work. By a self-developed cooling effect testing device, the optimal coating structure was selected and the optimum adding amount of the functional materials was determined. We also investigated the depth dependence of cooling effect, and by employing pendulum type frictiograph test and MMLS3 load-accelerating equipment, evaluated the anti-skid performance and wear resistance of the coating. The results show that the optimal coating structure is CHSC with a combination of an upper reflective layer and a lower insulative layer, which can reduce the surface temperature by 12.75 ℃. Moreover, the upper layer of CHSC mixed with 15% (PVC) reflective functional materials and the lower layer of CHSC mixed with 10% (PVC) insulative functional materials are recommended. CHSC can reduce the temperature by 9.6 ℃ at the depth of 5 cm and by 6.7 ℃ at the depth of 10 cm. The ceramic particles spread in the coating act as an anti-skid material, and the amount of 0.8 kg/m2 can make CHSC achieve satisfactory anti-skid performance and wear resistance which are adequate for the requirement of pertinent standards. Our work can provides reference for the solution to the underlying permafrost problem in Qinghai-Tibet Area.
Key words:  Qinghai-Tibet area    asphalt pavement    compound heat-shielding coating (CHSC)    hollow glass bead    wear resistance
                    发布日期:  2019-06-19
ZTFLH:  U419.92  
基金资助: “十二五”国家科技支撑计划项目(2014BAG05B04); 交通运输部建设科技项目(2014318223010);国家自然科学基金(51608045); 河南工业大学博士基金项目(2017BS035)
通讯作者:  emailams@163.com   
作者简介:  陈玉静, 2017年6月毕业于长安大学, 获硕士学位。2017年至今在河南工业大学担任教师, 主要从事环保型路面研究。沙爱民,长安大学教授,博士研究生导师,代表作品 《半刚性路面材料结构与性能》《环保型路面材料与结构》《填石路基施工技术》。
引用本文:    
陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
CHEN Yujing, SHA Aimin, HU Kui, LIU Zhuangzhuang, CAO Shihao, ZHANG Hua. Preparation and Performance of Pavement Heat-shielding Coating for Qinghai-Tibet Area. Materials Reports, 2019, 33(14): 2319-2325.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050176  或          http://www.mater-rep.com/CN/Y2019/V33/I14/2319
1 Zhang M, Pei W, Li S. Applied Thermal Engineering, 2017, 127, 1478.
2 Li R, Zhao L, Ding Y J. Journal of Glaciology and Geocryology, 2012, 34(6), 1319(in Chinese).
李韧, 赵林, 丁永建. 冰川冻土, 2012, 34(6), 1319.
3 Wang T Q. Study on subgrade and pavement structural deformation cha-racteristics of high-grade highway in permafrost regions. Mater's Thesis, Chang'an University, China, 2016(in Chinese).
王铁权. 多年冻土区高等级公路路基路面结构变形特性研究. 硕士学位论文, 长安大学, 2016.
4 Regehr J D, Milligan C A, Montufar J. Journal of Cold Regions Engineering, 2013, 27(3), 109.
5 Wu J, Ma W, Sun Z. Cold Regions Science and Technology, 2010, 60(3), 234.
6 Fang J H. Adaptive countermeasure research on expressway construction in permafrost region of eastern part of Qinghai-Tibet. Ph.D.Thesis, Beijing Jiaotong University, China, 2017(in Chinese).
房建宏. 青藏高原东部多年冻土区高速公路建设适应性对策研究.博士学位论文, 北京交通大学, 2017.
7 Jiang F Q, Hu R J, Li Z. Journal of Geographical Sciences, 2008, 18(1), 3.
8 Tang S, Nima Z X, Gao D G. Journal of Chongqing University of Technology (Natural Science), 2015, 29(5), 112(in Chinese).
唐松, 尼玛扎西, 高定国. 重庆理工大学学报(自然科学), 2015, 29(5),112.
9 Du Y F, Wang S Y, Wang S J. Cold Regions Science and Technology, 2016, 129, 85.
10 Tarasov V A, Moiseev V A, Komkov M A. Russian Journal of Physical Chemistry B, 2016, 10(4), 719.
11 Shan W, Jiang H, Hu Z G. Disaster Advances, 2012, 5(4), 827.
12 Liu F, Dong A, Liu C. Journal of Applied Biomaterials & Functional Materials, 2018, 16, 112.
13 Zhang H, Li H, Zhang Y. Construction and Building Materials, 2018, 160, 707.
14 Liu F, Dong A, Liu C. Journal of Applied Biomaterials & Functional Materials, 2018, 16, 112.
15 Yang R C, Zhan C, Yang J. Journal of Wuhan University of Technology Materials Science Edition, 2017, 32(5), 1232.
16 Zhu Q Y, Wang W, Wang S Y. Cold Regions Science and Technology, 2012, 71, 129.
17 Zhang H, Hao P W, Ling T Q. Materials Review B:Research Papers, 2018, 32(3), 987(in Chinese).
张航, 郝培文, 凌天清. 材料导报:研究篇, 2018, 32(3), 987.
18 Jiang W, Sha A M, Xiao J J, et al. Journal of Tongji University (Natural Science), 2015, 43(1), 67(in Chinese).
蒋玮, 沙爱民, 肖晶晶, 等. 同济大学学报(自然科学版), 2015, 43(1), 67.
19 Zheng M L, Han L L, Wang F, et al. Construction and Building Mate-rials, 2015, 93, 1197.
20 Guan B W, Ding D H, Wu J Y, et al. Construction and Building Mate-rials, 2017, 157, 1117.
21 Sha A M, Liu Z Z, Tang K, et al. Construction and Building Materials, 2017, 139, 355.
22 Anting N, Din M F M, Iwao K, et al. Energy and Buildings, 2018, 158, 172.
23 Wang C H, Wang Y F, Sun X L, et al. China Journal of Highway and Transport, 2015, 28(8), 14(in Chinese).
王朝辉, 王玉飞, 孙晓龙, 等. 中国公路学报, 2015, 28(8), 14.
[1] 李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1294-1299.
[2] 肖轶, 徐呈艺, Ryou Min, 曹健. Cr3C2粒径对等离子堆焊铁基合金层组织与耐磨性能的影响[J]. 材料导报, 2018, 32(24): 4329-4333.
[3] 王选仓, 孙耀宁, 王文强, 赵伦, 周爱国. 粘层材料剪切疲劳特性及层间设计方法研究[J]. 材料导报, 2018, 32(16): 2750-2756.
[4] 夏法锋, 杨安娜, 马春阳. 工艺参数对脉冲电沉积Ni-TiN纳米镀层微观组织和性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2448-2451.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed