Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (14): 2448-2451    https://doi.org/10.11896/j.issn.1005-023X.2018.14.022
  金属与金属基复合材料 |
工艺参数对脉冲电沉积Ni-TiN纳米镀层微观组织和性能的影响
夏法锋, 杨安娜, 马春阳
东北石油大学机械科学与工程学院, 大庆 163318
Influence of Plating Parameters on Microstructure and Properties of the Ni-TiN Nanocoating Prepared by Pulse Electrodeposition
XIA Fafeng, YANG Anna, MA Chunyang
College of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318
下载:  全 文 ( PDF ) ( 2349KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电沉积技术是一种方便、高效、低成本制备金属基纳米镀层的方法,其工艺参数直接决定金属基纳米镀层的微观组织及性能。为系统研究电沉积工艺参数对金属基纳米镀层表面形貌、显微组织、力学性能及耐磨损性能的影响规律,本实验采用脉冲电沉积制得Ni-TiN纳米镀层,并利用透射电镜(TEM)、原子力显微镜(AFM)、X射线衍射仪(XRD)、摩擦磨损试验机研究了工艺参数对Ni-TiN纳米镀层的显微结构、显微硬度和性能的影响。结果表明,当电流密度为4 A/dm2时,Ni-TiN纳米镀层的显微硬度为984.7HV,TiN微粒复合量为8.69%(质量分数)。采用不同脉冲频率制得的Ni-TiN纳米镀层,其晶面原子呈现不同方向的面心立方晶格结构。当脉冲频率为200 Hz时,Ni-TiN纳米镀层中Ni和TiN的平均粒径分别为87.2 nm和34.6 nm。当脉冲占空比为20%时,Ni-TiN纳米镀层的显微硬度为980HV,其平均磨损量为7.56 mg/mm2
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
夏法锋
杨安娜
马春阳
关键词:  工艺参数  Ni-TiN纳米镀层  微观组织  耐磨性能    
Abstract: Electrodeposition technology is a kind of convenient, efficient, low cost method for preparing metal matrix nanocoatings, and the plating parameters directly determine the microstructure and properties of the coating. In order to investigate the influence of plating parameters on surface morphology, microstructure, mechanical properties and wear resistance of metal matrix nanocoatings, Ni-TiN nanocoatings were successfully prepared by using pulse electrodeposition method in this paper, and the influence of plating parameters on microstructure, microhardness and properties of the coating was investigated with the use of transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and friction wear testing machine. The results showed that the Ni-TiN nanocoating obtained at 4 A/dm2 current density exhibited an optimum microhardness and TiN content values of 984.7HV and 8.69 wt%, respectively. Ni-TiN nanocoatings prepared at different pulse frequencies exhibited fcc structure in different directions. The average grain diameters of Ni and TiN in the nanocoating prepared at 200 Hz were 87.2 nm and 34.6 nm, respectively. The nanocoating prepared at 20% duty cycle showed an optimum microhardness and average wear of 980HV and 7.56 mg/mm2, respectively.
Key words:  plating parameter    Ni-TiN nanocoating    microstructure    wear resistance
               出版日期:  2018-07-25      发布日期:  2018-07-31
ZTFLH:  TG174  
基金资助: 国家自然科学基金(51474072);黑龙江省科学基金(LC2018020)
通讯作者:  马春阳,女,1977年生,博士,副教授,主要从事金属材料性能分析研究 E-mail:chunyangandma@163.com   
作者简介:  夏法锋:男, 1974年生,博士,教授,博士研究生导师,主要从事纳米材料制备及表征 Tel:0459-6507757 E-mail:xiaff@126.com
引用本文:    
夏法锋, 杨安娜, 马春阳. 工艺参数对脉冲电沉积Ni-TiN纳米镀层微观组织和性能的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2448-2451.
XIA Fafeng, YANG Anna, MA Chunyang. Influence of Plating Parameters on Microstructure and Properties of the Ni-TiN Nanocoating Prepared by Pulse Electrodeposition. Materials Reports, 2018, 32(14): 2448-2451.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.14.022  或          http://www.mater-rep.com/CN/Y2018/V32/I14/2448
1 Fang Xiaohong. Research progress for ultrasound-assisted electroplating of Ni and Ni-based composite coatings[J]. Materials Protection,2008,41(5):58(in Chinese).
方小红.超声波电镀镍及镍基复合镀层的研究进展[J].材料保护,2008,41(5):58.
2 Xia F, Tian J, Ma C, et al. Effect of pulse frequency on microstructural, nanomechanical, and wear properties of electrodeposited Ni-TiN composite coatings[J]. Journal of Applied Physics,2014,116(23):9279.
3 Amadeh A, Rahimi A, Farshchian B, et al. Corrosion behavior of pulse electrodeposited nanostructure Ni-SiC composite coatings[J]. Journal of Nanoscience and Nanotechnology,2010,10(8):5383.
4 Abdel A. Hard and corrosion resistant nanocomposite coating for Al alloy[J]. Materials Science and Engineering A,2008,474:181.
5 Ma C, Guo X, Leang J, et al. Synthesis and characterization of Ni-P-TiN nanocomposites fabricated by magnetic electrodeposition technology[J]. Ceramics International,2016,42(11):10428.
6 Li X Y, Zhu Y Y, Xiao G R. Application of arti-cial neural networks to predict sliding wear resistance of Ni-TiN nanocomposite coatings deposited by pulse electrodeposition[J]. Ceramics International,2014,40(8):11767.
7 Li X Y. Prediction of TiN particle composite of Ni-TiN coatings based on AR model[J]. Journal of Synthetic Crystals,2016,45(6):1703(in Chinese).
李兴远.基于AR模型的Ni-TiN复合镀层TiN粒子复合量预测研究[J].人工晶体学报,2016,45(6):1703.
8 Xia F F, Huang M, Ma C Y, et al. Effect of electrodeposition met-hods on corrosion resistance of Ni-SiC nanocomposite coatings[J]. Journal of Functional Materials,2013,44(16):2429(in Chinese).
夏法锋,黄明,马春阳,等.电沉积方式对Ni-SiC纳米镀层耐腐蚀性能的影响[J].功能材料,2013,44(16):2429.
9 Wang Y, Zhou Q, Li K, et al. Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance[J]. Ceramics International,2015,41(1):79.
10 Meng K L, Yao P P. Effect of α-SiC particle size on friction and wear properties of copper-matrix friction material[J]. Materials Science & Engineering of Powder Metallurgy,2010,15(3):294(in Chinese).
孟康龙,姚萍屏.α-SiC的粒度对铜基摩擦材料摩擦磨损的影响[J].粉末冶金材料科学与工程,2010,15(3):294.
11 Lee H K, Lee H Y, Jeon J M. Codeposition of micro-and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating[J]. Surface and Coatings Technology,2007,201:4711.
12 Ma C Y, Ding J J, Chu D Q. Effect of pulse electrodeposition parameters on the performance of Ni-SiC composite coatings[J]. Ordnance Material Science & Engineering,2012,35(4):65(in Chinese).
马春阳,丁俊杰,楚殿庆.脉冲电沉积工艺参数对Ni-SiC复合镀层性能的影响[J].兵器材料科学与工程,2012,35(4):65.
13 Wu Menghua, Li Lintai, Wang Yuangang, et al. Microstructure and wear resistance of nano TiN/Ni composite coatings prepared by different electrodeposition methods[J]. Mechanical Engineering Materials,2016,40(12):78(in Chinese).
吴蒙华,李霖泰,王元刚,等.不同方式电沉积纳米TiN/Ni复合镀层的组织和耐磨损性能[J].机械工程材料,2016,40(12):78.
14 Xia F, Yue W, Wang J D,et al. Synthesis of Ni-TiN composite nanocoatings by magnetic pulse current deposition[J]. Ceramics International,2015,41(9):11445.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[3] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[4] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[5] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[6] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[7] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[8] 陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
[9] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[10] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[11] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[12] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[13] 李振伟, 狄士春. 纳米TiO2微粒对2214铝合金微弧氧化膜微观结构及耐磨性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1294-1299.
[14] 丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
[15] 张金祥, 欧阳希, 周健, 张济山. Cr含量降低对H13钢组织与力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1323-1327.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed