Please wait a minute...
材料导报  2019, Vol. 33 Issue (10): 1697-1701    https://doi.org/10.11896/cldb.18030191
  金属与金属基复合材料 |
沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响
陈宇强1, 宋文炜1, 潘素平2, 刘文辉1,3, 宋宇锋1,3, 张浩1,3
1 湖南科技大学机电工程学院,湘潭 411201
2 中南大学高等研究中心,长沙 410083
3 湖南科技大学高温耐磨材料及制备技术湖南省国防技术重点实验室,湘潭 411201
The Effects of Deposited Particles on the Fatigue Crack Growth Behavior of 7N01-T6 Aluminum Alloy
CHEN Yuqiang1, SONG Wenwei1, PAN Suping2, LIU Wenhui1,3, SONG Yufeng1,3, ZHANG Hao1,3
1 School of Mechanicl Engineering, Hunan University of Science and Technology, Xiangtan 411201
2 Advanced Research Center, Central South University, Changsha 410083
3 Hunan Provincial Key Defense Laboratory of High Temperature Wear-resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan 411201
下载:  全 文 ( PDF ) ( 18279KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用自主设计的实验方法,结合疲劳裂纹扩展速率测试以及断口微观形貌观察研究了R=0.1和R=0.5两种应力比下,石墨和氧化铝沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响。结果表明:在两种应力比条件下,裂纹扩展Ⅰ、Ⅱ阶段中,合金在石墨颗粒环境下的疲劳裂纹扩展速率均最快。当R=0.5时,在裂纹扩展Ⅰ、Ⅱ阶段,合金在氧化铝颗粒环境下的疲劳裂纹扩展速率最慢。当R=0.1时,在应力强度因子ΔK<15 MPa·m1/2阶段,合金在氧化铝颗粒环境下的疲劳裂纹扩展速率最慢,在ΔK=15~30 MPa·m1/2阶段,合金在氧化铝颗粒环境和大气环境下的疲劳裂纹扩展速率相当。石墨颗粒环境下合金疲劳裂纹扩展速率的增加是由于石墨颗粒的润滑作用降低了疲劳卸载过程中的裂纹闭合效应。氧化铝颗粒环境下合金疲劳裂纹扩展速率的降低是由于氧化铝颗粒在断面的沉积增强了疲劳卸载过程中的裂纹闭合效应。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈宇强
宋文炜
潘素平
刘文辉
宋宇锋
张浩
关键词:  沉积颗粒  铝合金  疲劳裂纹扩展  应力比  微观组织    
Abstract: The influences of graphite and alumina deposited particles on the fatigue crack propagation behavior of 7N01-T6 aluminum alloy at R=0.1 and R=0.5 were investigated by using a self-designed experimental method and combined with fatigue crack growth rate test and fracture morphology observation. The results show that the fatigue crack growth rate of the alloy in the graphite particle environment is the fastest under both stress ratio conditions in the crack growth stage Ⅰ and Ⅱ. When the R is 0.5, the fatigue crack growth rate of the alloy in the alumina particle environment is the slowest in the crack growth stage Ⅰ and Ⅱ. When the R is 0.1, ΔK<15 MPa·m1/2, the fatigue crack growth rate of the alloy in the alumina particle environment is the slowest. When the ΔK in the range from 15 MPa·m1/2 to 30 MPa·m1/2, the fatigue crack growth rate of the alloy in the alumina particle environment and atmospheric environment is quite similar. The increase of fatigue crack growth rate in graphite particle environment is due to the lubricated by graphite particles. It reduces the effect of crack closure during unloading. The decrease of the fatigue crack propagation rate in the alumina particle environment is due to the deposition of alumina particles on the fracture surface enhances the crack closure level during unloading.
Key words:  deposited particles    aluminum alloy    fatigue crack growth    stress ratio    microstructure
                    发布日期:  2019-05-16
ZTFLH:  TG146.2  
基金资助: 国家自然科学基金(51405153;51475162)
通讯作者:  yqchen1984@163.com   
作者简介:  陈宇强,男,博士,副教授,湖南科技大学材料成型与控制工程系副主任,主要研究方向为铝合金加工工艺与性能、损伤机理以及微结构表征。入选湖南省青年骨干教师、湖南省科技创新创业菁英培育计划。主持国家自然科学基金,湖南省创新创业技术投资专项,湘潭市科技创新“四个十”重大科技专项,校企合作科研项目,产学研成果转化项目等科研项目7项,获得湖南省自然科学奖三等奖一项,在Materials Science and Engineering AJournal of Alloys and Compounds等学术刊物发表学术论文40余篇,获得授权专利10余项,软件注册权8项,担任Journal of Alloys and CompoundsMicro & Nano Letters、《稀有金属材料与工程》等期刊审稿人。
引用本文:    
陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
CHEN Yuqiang, SONG Wenwei, PAN Suping, LIU Wenhui, SONG Yufeng, ZHANG Hao. The Effects of Deposited Particles on the Fatigue Crack Growth Behavior of 7N01-T6 Aluminum Alloy. Materials Reports, 2019, 33(10): 1697-1701.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030191  或          http://www.mater-rep.com/CN/Y2019/V33/I10/1697
1 Cai B, Zheng Z Q, Liao Z Q, et al. Materials Review A:Review Papers, 2010, 24(9), 134 (in Chinese).
蔡彪 , 郑子樵 , 廖忠全, 等. 材料导报:综述篇, 2010, 24(9), 134.
2 Chen Y Q, Pan S P, Liu W H, et al. Journal of Alloys and Compounds, 2017,709, 213.
3 Chen Y Q, Pan S P, Zhou M Z, et al.Materials Science and Engineering A, 2013, 580, 150.
4 Dursun T, Soutis C. Materials and Design, 2014, 56, 862.
5 Wang C Q, Xiong J J, Shenoi R A, et al. International Journal of Fatigue, 2016, 83, 280.
6 Chen Y Q, Song W W, Pan S P, et al. Journal of Central South University(Science and Technology), 2016, 47(10), 3332 (in Chinese).
陈宇强, 宋文炜, 潘素平, 等. 中南大学学报(自然科学版), 2016, 47(10), 3332.
7 Lv S L, Cui Y, Gao X S, et al. Materials Science and Engineering A, 2013, 574, 243.
8 Tuo W H, Yang S L, Yang W T, et al. Materials Review B:Research Papers, 2015, 29(10), 105 (in Chinese).
庹文海, 杨尚磊, 杨文涛, 等. 材料导报:研究篇, 2015, 29(10), 105.
9 Kinnersley S, Roelen A.Safety Science, 2007, 45, 31.
10 Burns J T, Gupta V K, Agnew S R, et al. International Journal of Fatigue, 2013, 55, 268.
11 Prasad N E, Vogt D, Bidlingmaier T, et al. Materials Science and Engineering A, 2000, 276, 283.
12 Zhu X, Jones J W,Allison J E, et al. Metallurgical and Materials transactions A, 2008, 39, 2681.
13 Chemin A E A, Saconi F, Filho W W B, et al. Engineering Fracture Mechanics, 2015, 141, 274.
14 Hui L, Zhou S, Xu L, et al.Advanced Materials Research, 2011, 337, 756.
15 Burns J T, Jones J J, Thompson A D, et al. International Journal of Fatigue, 2018, 106, 196.
16 Fonte M, Romeiro F, Freitas M D, et al. International Journal of Fatigue, 2003, 25, 1209.
17 Newman J A, Piascik R S.International Journal of Fatigue, 2004, 26, 923.
18 Liu W H, Zhou F, Qiu Q, et al. Hot Working Technology, 2016, 45(6), 44(in Chinese).
刘文辉,周凡,邱群,等. 热加工工艺, 2016, 45(6), 44.
19 Peng X D, Feng X Z, Hu D M, et al. Tribology, 2004, 24(6), 536 (in Chinese).
彭旭东, 冯向忠, 胡丹梅, 等. 摩擦学学报, 2004, 24(6), 536.
20 Zhou Z, Peng H X, Fan Z, et al. Materials Science and Technology, 2000, 16(7-8), 908.
21 Chen Y R, Shi X F, Peng X, et al. Acta Metallurgica Sinica, 1991, 27(4), 44 (in Chinese).
程育仁, 施晓锋, 彭湘, 等. 金属学报, 1991, 27(4), 44.
22 Siddiqui R A, Abdul-Wahab S A, Pervez T.Materials and Design, 2008, 29, 70.
23 Liu Z, Li F, Xia P, et al. Materials Science and Engineering A, 2015, 625, 271.
24 Yin D, Liu H, Chen Y, et al. International Journal of Fatigue, 2016, 84, 9.
25 Zhang J Z, He X D, Tang H, et al.Materials Science and Engineering A, 2008, 485, 115.
26 Halliday M D, Cooper C, Bowen P. International Journal of Fatigue, 2007, 29, 1195.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[5] 王川, 李德富. 冷轧变形量对5A02铝合金管材组织和性能的影响[J]. 材料导报, 2019, 33(8): 1361-1366.
[6] 王一唱, 曹玲飞, 吴晓东, 邹衍, 黄光杰. 石油钻杆用7xxx系铝合金微观组织和性能的研究进展[J]. 材料导报, 2019, 33(7): 1190-1197.
[7] 陈志国, 方亮, 吴吉文, 张海筹, 马文静, 白月龙. 半固态挤压高硅铝合金二次加热的微观组织演变[J]. 材料导报, 2019, 33(6): 1006-1010.
[8] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[9] 徐从昌, 叶拓, 唐明, 郭鹏程, 唐徐, 吴远志, 李落星. 动态载荷下7005铝合金力学行为及数值模拟[J]. 材料导报, 2019, 33(4): 670-673.
[10] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[11] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[12] 王子博, 刘满平, 姜奎, 秦希, 章勇, 王圣楠, 陈健. 退火时间对高压扭转Al-1.0Mg铝合金组织及性能的影响[J]. 材料导报, 2019, 33(2): 321-324.
[13] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[14] 靳文豪, 邢保英, 何晓聪, 曾凯, 余康. 不同腐蚀环境下铝合金自冲铆接头静力学性能研究[J]. 材料导报, 2019, 33(16): 2725-2728.
[15] 卞贵学, 陈跃良, 张勇, 王安东, 王哲夫. 基于电偶腐蚀仿真的铝/钛合金在不同浓度酸性NaCl溶液中与水介质中的当量折算系数[J]. 材料导报, 2019, 33(16): 2746-2752.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed