Please wait a minute...
材料导报  2019, Vol. 33 Issue (4): 665-669    https://doi.org/10.11896/cldb.201904019
  金属与金属基复合材料 |
6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响
张亮亮1,王希靖1,2,,刘骁1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 兰州理工大学材料科学与工程学院,兰州 730050
Effect of Dynamic Recrystallization Mode on Texture Type for the
Friction-Stir-Welded 6082-T6 Aluminum Alloy
ZHANG Liangliang1, WANG Xijing1,2, LIU Xiao1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050;
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 5512KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用电子背散射衍射技术,借助取向成像分析软件,分别研究了6082-T6铝合金搅拌摩擦焊焊核区后退侧、焊核区正中心、焊核区前进侧上表面晶粒形貌、晶界特征、织构组分的演化。结果表明,焊接过程中,焊核区后退侧金属产生热塑性变形、晶粒内位错塞积与重组,形成小角度晶界的亚晶粒,部分小角度晶界通过旋转转变为大角度晶界,发生“连续动态再结晶”,母材粗大晶粒被细化。同时形成(111)[110]剪切织构,而在(111)[110]取向晶粒周围产生许多变形亚结构。(001)[100]立方取向亚结构在位错密度及位错组态上的优势,使其在焊接热循环作用下成为“非连续动态再结晶”的晶核,随后长大为(001)[100]立方取向晶粒。轴肩的旋转挤压作用,使焊核区晶粒沿ND方向旋转,故在焊核区正中心位置出现(001)[110]旋转立方织构,而在前进侧出现(111)[110]剪切织构和(001)[100]立方织构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张亮亮
王希靖
刘骁
关键词:  6082-T6铝合金  搅拌摩擦焊  动态再结晶  电子背散射衍射(EBSD)    
Abstract: Herein we investigated the evolution of grain morphology, boundary characterization, misorientation distribution and texture at the retreating side, the very center and the advancing side of the nugget zone during friction stir welding of 6082-T6 aluminum alloys. The experiment was conducted by applying electron backscattered diffraction (EBSD)technique and with the assistance of orientation analysis software. It can be observed that intragranular dislocations stacked and reorganized, and small-angle subgrains formed at the retreating side of nugget zone during the welding process, owing to hot plastic deformation. Part of these formed small-angle grain boundaries subsequently transformed into large-angle grain boundaries by rotating, thus leading to "continuous dynamic recrystallization" and refinement of the coarse grain of base metal. Meanwhile, there formed (111) [110] shear texture, and many deformation substructures near (111)[110]orientation grains. Due to the superiority of(001)[100] cubic orientation substructures with respect to dislocation density and dislocation configuration, they would become the nucleus of "discontinuous dynamic recrystallization" under the action of welding thermal cycle and grow into (001) [100] cubic oriented grains. The rotary extrusion of the shoulder made the grains in nugget zone rotate along ND direction, and in consequence,(001) [110]rotated cube texture formed at the very center of nugget zone, while at the advancing side, finally formed (111) [110] shear texture and cube texture (001) [100].
Key words:  6082-T6 aluminum alloy    friction stir welding    dynamic recrystallization    electron backscattered diffraction (EBSD)
               出版日期:  2019-02-25      发布日期:  2019-03-11
ZTFLH:  TG453.9  
基金资助: 国家自然科学基金(2012ZX04008011)
作者简介:  张亮亮,博士研究生,主要研究搅拌摩擦焊过程中动态组织演变规律及其对焊接接头力学性能的影响。王希靖,兰州理工大学,教授。主要从事搅拌摩擦焊设备及搅拌摩擦焊连接机理研究、大型水轮机过流部件修复用专用机器人研究、带极堆焊技术研究及有色金属冶炼过程专用装置研究,在国内外重要期刊发表文章200多篇。
引用本文:    
张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
ZHANG Liangliang, WANG Xijing, LIU Xiao. Effect of Dynamic Recrystallization Mode on Texture Type for the
Friction-Stir-Welded 6082-T6 Aluminum Alloy. Materials Reports, 2019, 33(4): 665-669.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.201904019  或          http://www.mater-rep.com/CN/Y2019/V33/I4/665
1 Threadgill P L. Science & Technology of Welding & Joining,2007,12(4),357.2 Tamadon A, Pons D, Sued K, et al. Metals-Open Access Metallurgy Journal,2017,7(10),423.3 Ghosh A K, Raj R. Acta Metallurgica,1986,34(3),447.4 Yuan G C, Liang C L, Liu H, et al. Transactions of the China Welding Institution,2014,35(8),80(in Chinese).袁鸽成,梁春朗,刘洪,等.焊接学报,2014,35(8),80.5 Peng Y, Shen C, Zhao Y, et al. Rare Metal Materials & Engineering,2017,46(2),344.6 Xu W F, Liu J H, Chen D L. Journal of Alloys & Compounds,2011,509(33),84497 Yuan G C, Li Z H, Zhu Z H, et al. Materials Research and Application,2010,4(4),509(in Chinese)袁鸽成,李仲华,朱振华,等.材料研究与应用,2010,4(4),509.8 Suhuddin U F H R, Mironov S, Sato Y S, et al. Materials Science & Engineering A,2010,527(7-8),1962。9 Zhang C C, Chang B H, Tao J, et al. Transactions of the China Welding Institution,2013,34(3),57(in Chinese).张成聪,常保华,陶军,等.焊接学报,2013,34(3),57.10 Ke L M, Pan J L, Xing L, et al. Journal of Mechanical Engineering,2009,45(4),89(in Chinese).柯黎明,潘际銮,邢丽,等.机械工程学报,2009,45(4),89.11 Almoussawi M, Smith A J, Young A, et al. International Journal of Advanced Manufacturing Technology,2017,92(1-4),341.12 Pashazadeh H, Teimournezhad J, Masoumi A. International Journal of Advanced Manufacturing Technology,2016,88(5),1.13 Wang T, Zou Y, Liu X, et al. Materials Science & Engineering A,2016,671,7.14 Zhang F, Liu Y F, Li J L, et al. Foundry Technology,2017,38(5),1042(in Chinese).张放,刘艳芬,李继林,等.铸造技术,2017,38(5),1042.15 Huang K, Logé R E. Materials & Design,2016,111,548.16 Mcnelley T R, Swaminathan S, Su J Q. Scripta Materialia,2008,58(5),349.17 Yin P F, Zhang R, Xiong J T, et al. Acta Physica Sinica,2013,62(1),472(in Chinese).殷鹏飞,张蓉,熊江涛,等.物理学报,2013,62(1),472.18 Gratecap F, Girard M, Marya S, et al. International Journal of Material Forming,2012,5(2),99.19 Mironov S, Sato Y S, Kokawa H, et al. Acta Materialia,2011,59(14),5472.20 Fonda R W, Knipling K E. Science & Technology of Welding & Joining,2011,16(4),288.21 Canova G R, Kocks U F, Jonas J J. Acta Metallurgica,1984,32(2),211.22 Mao W M. Crystallographic texture and anisotropy of metallic materials, Science Press, China,2002(in Chinese).毛卫民.金属材料的晶体学织构与各向异性,科学出版社,2002.23 Etter A L, Mathon M H, Baudin T, et al. Scripta Materialia,2002,46(4),311.
[1] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[2] 方振邦, 张志强, 李颖, 尹华, 邢艳双, 何长树. 7N01S-T5铝合金厚板搅拌摩擦焊接头的晶间腐蚀行为[J]. 材料导报, 2019, 33(2): 304-308.
[3] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[4] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[5] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[6] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[7] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[8] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[9] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[10] 毛育青, 柯黎明, 江周明. 搅拌针端部挤压区内塑性金属的流动行为[J]. 材料导报, 2018, 32(20): 3612-3617.
[11] 张昊,黄永德,郭跃,陆青松. 适用于机器人焊接的搅拌摩擦焊技术及工艺研究现状[J]. 《材料导报》期刊社, 2018, 32(1): 128-134.
[12] 王希靖, 魏学玲, 张亮亮. 焊后时效处理对6082-T6铝合金搅拌摩擦焊接头的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 62-65.
[13] 毛育青,柯黎明,陈玉华,刘奋成. 铝合金厚板搅拌摩擦焊焊缝局部金属的塑性流动特征[J]. 《材料导报》期刊社, 2017, 31(24): 145-149.
[14] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[15] 叶俊华,汤爱涛,马仕达,陈巧旺,王玉容,徐安莲. 搅拌摩擦焊接Mg-6Al-1Sn合金组织与性能研究*[J]. 材料导报编辑部, 2017, 31(22): 79-84.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed