Please wait a minute...
材料导报  2019, Vol. 33 Issue (12): 2040-2046    https://doi.org/10.11896/cldb.18030175
  金属与金属基复合材料 |
Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为
钱昊, 杨银辉, 曹建春, 苏煜森
昆明理工大学材料科学与工程学院,昆明 650093
High Temperature Deformation Behavior of Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2NLow-nickel Type Duplex Stainless Steel
QIAN Hao, YANG Yinhui, CAO Jianchun, SU Yusen
College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093
下载:  全 文 ( PDF ) ( 4246KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用Gleeble-3800热力模拟实验机在温度为1 123~1 423 K,应变速率为0.01~10 s-1的条件下对Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢进行热压缩实验,以研究其高温热压缩变形机理和组织演变规律,确定了应力水平常数α值,依照双曲正弦方程,建立了Z 参数的峰值流变应力本构方程,并且绘制了不同应变量下的热加工图。研究表明:在发生动态再结晶的低应变速率0.01~0.1 s-1的高温1 323~1 423 K区域,峰值应力所对应的应变值越小,奥氏体的动态再结晶越容易发生。相同应变速率下,奥氏体相随变形温度升高由动态回复向动态再结晶组织转变。铁素体动态再结晶主要发生在1 123~1 223 K中低温区。基于热变形方程计算得到该双相不锈钢的表观形变激活能(Q=578.46 kJ/mol)高于2205双相不锈钢(451 kJ/mol),其表观应力指数n=8.439 8,表明它的变形机制主要是以晶格自扩散控制的稳定结构模型为主。热加工图分析表明,随着应变量的增加,在较高应变速率区域失稳区增大。确定的最佳热加工区域的条件:应变速率为0.01~0.08 s-1,温度为1 323~1 423 K,该区域功率耗散系数都较大,为0.30~0.52,该条件下试验钢热变形以奥氏体动态再结晶为主。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钱昊
杨银辉
曹建春
苏煜森
关键词:  双相不锈钢  热变形  动态再结晶  本构方程  热加工图    
Abstract: Using Gleeble-3800 thermal simulation machine, the hot compression experiment was conducted to investigate the deformation mechanism and microstructure evolution of Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N duplex stainless steel (DSS) in the temperature of 1 123—1 423 K, and the strain rate of 0.01—10 s-1. According to the hyperbolic sine equation, the peak flow stress constitutive equation of the Z parameter was established after determining the value of stress level constant α, meanwhile, the thermal processing drawings under different strain have been drawn. In the dynamic recrystallization (DRX) region of low deformation strain rate 0.01—0.1 s-1and high deformation temperature 1 323—1 423 K, the smaller value of strain corresponding to the peak stress, the easier occurring of austenite DRX. At the same strain rate, the auste-nite phases change from dynamic recovery to DRX with the increase of deformation temperature. The ferrite DRX mainly occurred in the middle deformation temperature region of 1 123—1 223 K. The deformation apparent activation energy Q was calculated as 578.46 kJ/mol based on thermal deformation equation, which is higher than that of 2205 DSS (451 kJ/mol), and the apparent stress exponent n was calculated as 8.439 8, indicated that the deformation mechanism is structure stability model based on lattice self-diffusion controlled. The analysis of hot processing maps shows that the instable regions gradually increase with the increase of strain on the condition of high strain rates. The optimized thermal processing area was determined to be in the strain rate of 0.01—0.08 s-1, in the deformation temperature of 1 323—1 423 K, and the corresponding high values of power dissipation coefficients are between 0.30—0.52, thus, the austenite DRX occurred under this deformation conditions for tested steels.
Key words:  duplex stainless steel    hot deformation    dynamic recrystallization    constitutive equation    hot working drawing
                    发布日期:  2019-05-31
ZTFLH:  TG142  
基金资助: 国家自然科学基金(51461024)
通讯作者:  yyhyanr@sina.com   
作者简介:  钱昊,昆明理工大学材料科学与工程学院2016级工程硕士,主要从事双相不锈钢热变形方向研究。杨银辉,昆明理工大学材料科学与工程学院,副教授。2011年毕业于同济大学材料科学与工程学院,获得材料学博士学位。同年加入昆明理工大学材料科学与工程学院工作至今,主要从事不锈钢材料设计、强韧化及组织相变,金属材料耐腐蚀性等方面研究。先后主持3项国家自然科学基金项目,在SCI、EI检索期刊发表论文20余篇。
引用本文:    
钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
QIAN Hao, YANG Yinhui, CAO Jianchun, SU Yusen. High Temperature Deformation Behavior of Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2NLow-nickel Type Duplex Stainless Steel. Materials Reports, 2019, 33(12): 2040-2046.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18030175  或          http://www.mater-rep.com/CN/Y2019/V33/I12/2040
1 Charles J,Chemelle P, Hu J C,et al. Word Iron & Steel, 2011, 11(6),1(in Chinese).
Charles J,Chemelle P, 胡锦程,et al. 世界钢铁, 2011, 11(6),1.
2 Gao W, Luo J M, Yang J J. Ordnance Material Science and Engineering, 2005(3),61(in Chinese).
高娃, 罗建民, 杨建君. 兵器材料科学与工程, 2005(3),61.
3 Zhang Guoxin, Li Shuangquan. Petrochemical Equipment Technology,2007, 28(4),55(in Chinese).
张国信, 李双权. 石油化工设备技术, 2007, 28(4),55.
4 Du C F, Zhan F, Yang Y H, et al. Metallic Functional Materials, 2010(5),63(in Chinese).
杜春风, 詹凤, 杨银辉, 等. 金属功能材料, 2010(5),63.
5 Yamamoto Y, Santella M L, Liu C T, et al. Materials Science & Engineering: A, 2009, 524(1-2),176.
6 Huang Y L, Wang J B, Ling X S, et al. Materials Review, 2008, 22(s3),173(in Chinese).
黄有林, 王建波, 凌学士, 等. 材料导报, 2008, 22(s3),173.
7 Li L F, Yang W Y, Sun Z Q. Acta Metallurgica Sinica, 2004(12),1257(in Chinese).
李龙飞, 杨王玥, 孙祖庆.金属学报,2004(12),1257.
8 Zeng J S, Xiong J, Shi W, et al. Materials Science and Technology. 2013,21(2),72(in Chinese).
曾敬山, 熊杰, 史文, 等. 材料科学与工艺, 2013, 21(2), 72.
9 Wu R H, Zhu H T, Zhang H B, et al. Journal of Shanghai Jiaotong University, 2001(3), 339(in Chinese).
吴瑞恒, 朱洪涛, 张鸿冰, 等. 上海交通大学学报, 2001(3), 339.
10Su Yusen,Yang Yinhui, Cao Jianchun, et al. Acta Metallurgica Sinica, 2018, 54(4), 485(in Chinese).
苏煜森, 杨银辉, 曹建春, 等. 金属学报, 2018, 54(4), 485.
11Du S W, Chen S M. Transactions of Materials and Heat Treatment, 2016(3), 223(in Chinese).
杜诗文,陈双梅. 材料热处理学报,2016(3),223.
12Zahiri S H, Davies C H J, Hodgson P D. Scripta Materialia, 2005, 52(4),299.
13Zou D N, Wu K, Han Y, et al. Materials & Design, 2013, 51,975.
14Chen Lei, Wang Longmei, Du Xiaojian, et al. Acta Metallurgica Sinica,2010,46(1),52(in Chinese).
陈雷,王龙妹,杜晓建,等. 金属学报,2010,46(1),52.
15Gironès A, Llanes L, Anglada M, et al. Materials Science & Engineering A, 2004, 367(1-2),322.
16Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Metallurgical Tran-sactions A, 1984, 15, 1883.
17Huang F X, Yin P, Li S S, et al. Journal of Chongqing Institute of Technology(Natural Science), 2010,24(1),92(in Chinese).
黄福祥,尹平,李司山,等.重庆理工大学学报(自然科学),2010,24(1),92.
18Li Dongfeng, Zhang Duanzheng, Liu Shengdan, et al. Transactionsof Nonferrous Metals Society of China, 2016, 26(6),1491.
19Cabrera J M, Mateo A, Llanes L, et al. Journal of Materials Processing Technology, 2003, 143-144, 321.
20Guo J F, Zhou X D, Li H. Transactions of Materials and Heat Treatment,2014, 35(12),128(in Chinese).
郭俊锋, 周旭东, 李汉. 材料热处理学报, 2014, 35(12),128.
21He A, Yang X Y, Xie G L, et al. Journal of Iron and Steel Research, 2015(8),34(in Chinese).
何岸, 杨晓雅, 谢甘霖,等. 钢铁研究学报, 2015(8),34.
22Chen H Q, Bai J X, Qi H P, et al. Journal of Mechanical Engineering, 2014, 50(16),89(in Chinese).
陈慧琴, 柏金鑫, 齐会萍,等. 机械工程学报, 2014, 50(16),89.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[3] 侯艳, 程从前, 赵杰, 冯雪, 李然, 闵小华. 拉应力对2205双相不锈钢临界点蚀温度和点蚀行为的影响[J]. 材料导报, 2019, 33(6): 1022-1026.
[4] 张亮亮, 王希靖, 刘骁. 6082-T6铝合金搅拌摩擦过程中动态再结晶方式对焊核区织构类型的影响[J]. 材料导报, 2019, 33(4): 665-669.
[5] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[6] 丁雨田, 陈建军, 李海峰, 高钰璧, 许佳玉, 马元俊. 均匀化态GH3625合金热加工图及短流程热挤压管材研究[J]. 材料导报, 2019, 33(16): 2753-2758.
[7] 向红亮, 刘春育, 邓丽萍, 张伟, 任建斌. 固溶温度对节约型双相不锈钢组织及性能的影响[J]. 材料导报, 2019, 33(16): 2759-2764.
[8] 石磊, 柳翊, 沈俊芳, 金文中, 王黎, 张伟. P-ECAP挤压镁合金空心壁板的晶粒度演变模拟和实验研究[J]. 材料导报, 2019, 33(12): 2019-2024.
[9] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[10] 程晓农, 桂香, 罗锐, 杨雨童, 陈乐利, 王威, 王稳. 核电装备用奥氏体不锈钢的高温本构模型及动态再结晶[J]. 材料导报, 2019, 33(11): 1775-1781.
[11] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[12] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[13] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[14] 张永集, 吴光亮, 武尚文. Nb-Ti微合金高强钢动态再结晶动力学及临界条件[J]. 材料导报, 2018, 32(22): 3900-3907.
[15] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed