Please wait a minute...
材料导报  2018, Vol. 32 Issue (17): 3041-3050    https://doi.org/10.11896/j.issn.1005-023X.2018.17.017
  金属与金属基复合材料 |
镁基复合材料高温变形研究进展
吴萍萍, 张静静
上海交通大学金属基复合材料国家重点实验室,上海 200240
Advances in Hot Deformation Studies of Magnesium Matrix Composites
WU Pingping, ZHANG Jingjing
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
下载:  全 文 ( PDF ) ( 2329KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自20世纪80年代以来,不同类型(颗粒、晶须、纤维等)的增强镁基复合材料日益增多并得到了广泛的研究。镁基复合材料可设计性较强,且具备突出的力学性能与物理性能,包括低密度、高比刚度、较低的热膨胀系数、良好的阻尼性能、优异的抗震降噪能力及优良的电磁屏蔽性能等,在航空航天、军工制造、汽车电子、建筑用材及生物医用等各领域有着巨大的发展前景,被视作在先进技术领域颇具竞争力的一种轻质金属基复合材料。
   然而,镁及镁合金的晶体结构为密排六方型,室温下独立的滑移系相对较少,相应地,镁及镁合金具备较差的塑性加工能力。同时,作为硬质相的增强相,与基体镁合金之间的物理化学性能相差较大,存在一定的不兼容性。增强相的添入进一步恶化了镁基复合材料的塑性加工能力,这在很大程度上限制了镁基复合材料的使用。因而,开展关于镁基复合材料在高温变形等方面的研究工作十分重要。国内外关于镁基复合材料高温变形行为方面的科研工作大部分聚焦于不同的工艺参数对高温变形行为的影响、高温变形时发生的加工硬化及动态再结晶现象、建立相应的本构模型等方面。
   镁基复合材料常见的高温变形方式主要有五种,分别为超塑性变形、高温压缩、热循环变形、高温蠕变及高温二次变形。研究者们针对不同的高温变形方式开展了大量的研究工作,并取得了较为显著的研究成果。其中,高温压缩由于变形工艺相对简单而得到了更为广泛深入的研究。近年来,研究者们不仅探究了不同高温变形方式对镁基复合材料微观组织与性能的影响,还探究了应变量、温度、应变速率等变形条件对镁基复合材料高温变形行为的影响,更深入地探究了镁基复合材料在高温变形过程中的微观组织演变规律与相应的变形机制,结合数值分析构建了相应的本构模型,为镁基复合材料高温变形工艺的制定与优化提供了强有力的理论支持,有助于实现对镁基复合材料微观组织与性能的有效调控。
   本文综述了镁基复合材料高温变形的不同类型,阐释了镁基复合材料高温变形的本构方程及软化机理,并展望了今后镁基复合材料在高温变形方面的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴萍萍
张静静
关键词:  镁基复合材料  高温变形  本构方程  软化机理    
Abstract: Various types (particle, whisker and fiber) reinforced magnesium matrix composites have been extensively studied since the early 1980s due to their excellent designability as well as outstanding mechanical and physical properties, including low density, high specific stiffness, low thermal expansion coefficient, favorable damping capability, significant shock resistance and excellent electromagnetic shielding performance. As a light metal matrix composite, magnesium matrix composites are highly competitive in advanced technology field, which possess extensive prospect in aerospace, military, automotive, electronics and other applications.
   Nevertheless, the plastic deformation capability of magnesium alloy is quite poor, due to close-packed hexagonal structure and limited slip system at ambient temperature. Moreover, incompatibility caused by the difference of physical and chemical properties in hard phase reinforcements and the magnesium matrix alloy would further deteriorate the plastic deformation capability of magnesium composites, which may limit the application of magnesium composites to large extent. Therefore, it is of great importance to carry out the studies on hot deformation of magnesium composites. Previous studies about hot deformation of magnesium composites at home and abroad are mainly focused on the effects of deformation parameters on the deformation behaviors, the phenomena of work hardening and dynamic recrystallization during the hot deformation process, as well as establishment of constitutive equation.
   Generally, there are five common hot deformation modes of magnesium composites, including superplastic deformation, hot compression, thermal cycling deformation, high temperature creep and secondary hot deformation. Plenty of studies on various hot deformation have been conducted and remarkable progress has been achieved over the years. Furthermore, thanks to its relatively simple deformation process, the hot compression of magnesium composites has attracted more attentions from researchers. In recent years, researchers have studied the influence of different hot deformation methods on microstructure and properties of magnesium composites, as well as the effect of deformation parameters including deformation strain, temperature and strain rate on hot deformation behavior of magnesium composites. In addition, the microstructure evolution and relevant deformation mechanisms of magne-sium composites during the hot deformation process have been investigated, and the corresponding constitutive equations have been established combined with numerical analysis. These research results would provide great supports for the determination and optimization of hot deformation processing of magnesium composites, and contribute to controlling the microstructure and properties of magnesium composites effectively.
   Different kinds of hot deformation of magnesium matrix composites are introduced. The constitutive equation as well as softening mechanism of hot deformation of magnesium matrix composites are explained in detail. Finally, the critical research directions and the remaining challenges to be addressed are summarized.
Key words:  magnesium composites    hot deformation    constitutive equation    softening mechanism
                    发布日期:  2018-09-19
ZTFLH:  TB331  
基金资助: 航天八院基金(USCAST2013-22)
作者简介:  吴萍萍:女,1991年生,硕士,研究方向为镁基复合材料 E-mail:iamwpp@sjtu.edu.cn
引用本文:    
吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
WU Pingping, ZHANG Jingjing. Advances in Hot Deformation Studies of Magnesium Matrix Composites. Materials Reports, 2018, 32(17): 3041-3050.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.17.017  或          http://www.mater-rep.com/CN/Y2018/V32/I17/3041
1 Gupta M, Sharon N M L. Magnesium, magnesium alloys, and magnesium composites[M].New Jersey: John Wiley & Sons,2010.
2 Zhao Y, Dong G, Zhao B. Research progress of magnesium alloy application in aviation manufacturing[J].Nonferrous Metals Enginee-ring,2015,5(2):23(in Chinese).
赵怿,董刚,赵博.镁合金在航空领域应用的研究进展[J].有色金属工程,2015,5(2):23.
3 Li Z, Luo A A, Wang Q, et al. Fatigue characteristics of sand-cast AZ91D magne-sium alloy[J].Journal of Magnesium & Alloys,2017,5(1):1.
4 Yin D L, Qiao J, Cui H L. Effect of artificial aging on microstructures and mechanical properties of extruded Mg alloy ZK60[J].Applied Mechanics & Materials,2014,697:72.
5 Cao F, Song G L, Atrens A. Corrosion and passivation of magne-sium alloys[J].Corrosion Science,2016,111:835.
6 Taltavull C, Rodrigo P, Torres B, et al. Dry sliding wear behavior of AM50B magnesium alloy[J].Materials & Design,2014,56(4):549.
7 Hu H J, Sun Z, Ou Z W, et al. Wear behaviors and wear mechanisms of wrought magnesium alloy AZ31 fabricated by extrusion-shear[J].Engineering Failure Analysis,2017,72:25.
8 Govindaraju M, Balasubramanian K, Chackingal U, et al. Effect of severe plastic deformation and heat treatment on toughness of magnesium alloys[J].Procedia Materials Science,2014,6:37.
9 Pandey K M, Dey A. Magnesium metal matrix composites—A review[J].Reviews on Advanced Materials Science,2015,42(1):58.
10 Anasori B, Barsoum M W. Energy damping in magnesium alloy composites reinforced with TiC or Ti2AlC particles[J].Materials Science & Engineering A,2016,653:53.
11 Dezfuli S N, Huan Z, Mol A, et al. Advanced bredigite-containing magnesium-matrix composites for biodegradable bone implant applications[J].Materials Science & Engineering C,2017,79:647.
12 Turan M E, Sun Y, Akgul Y, et al. The effect of GNPs on wear and corrosion behaviors of pure magnesium[J].Journal of Alloys & Compounds,2017,724:14.
13 García-Rodríguez S, Torres B, Maroto A, et al. Dry sliding wear behavior of globular AZ91 magnesium alloy and AZ91/SiCp compo-sites[J].Wear,2017,390-391:1.
14 Han G Q, Shen J H, Ye X X, et al. The influence of CNTs on the microstructure and ductility of CNT/Mg composites[J].Materials Letters,2016,181:300.
15 Yang X, Huang Y, Barekar N S, et al. High shear dispersion technology prior to twin roll casting for high performance magnesium/SiCp metal matrix composite strip fabrication[J].Composites Part A,2016,90:349.
16 Sahoo B N, Panigrahi S K. Synthesis, characterization and mechanical properties of in-situ (TiC-TiB2) reinforced magnesium matrix composite[J].Materials & Design,2016,109:300.
17 Inoue Y, Jae-Ho K, Yonezawa S, et al. Enhanced mechanical strength of nickel-copper-coated carbon fiber/magnesium alloy composites fabricated using powder metallurgy[J].Chemistry Letters,2012,41(5):531.
18 Yang Y, Zhao Y, Kai X, et al. Superplasticity behavior and defor-mation mechanism of the in-situ Al3Zr/6063Al composites processed by friction stir processing[J].Journal of Alloys & Compounds,2017,710:225.
19 Torbati-Sarraf S A, Alizadeh R, Mahmudi R, et al. Evaluating the flow properties of a magnesium ZK60 alloy processed by high-pressure torsion: A comparison of two different miniature testing techniques[J].Materials Science & Engineering A,2017,708:432.
20 Watanabe H, Fukusumi M, Ishikawa K, et al. Superplasticity in a fullerene-dispersed Mg-Al-Zn alloy composite[J].Scripta Materialia,2006,54(9):1575.
21 Mukai T, Nieh T G, Iwasaki H, et al. Superplasticity in doubly extruded magnesium composite ZK60/SiC/17p[J].Materials Science & Technology,2013,14(1):32.
22 Higashi K. High strain rate superplasticity in Japan[J].Materials Science & Technology,2013,16(11-12):1320.
23 Zhu Y, Jin P, Zhao P, et al. Hot deformation behavior of Mg2B2O5 whiskers reinforced AZ31B magnesium composite fabricated by stir-casting[J].Materials Science & Engineering:A,2013,573(3):148.
24 Rashad M, Pan F, Liu Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method[J].Journal of Magnesium & Alloys,2016,4(4):270.
25 Hao S M, Xie J P, Wang A Q, et al. Hot deformation behaviors of 35% SiCp/2024Al metal matrix composites[J].Transactions of Nonferrous Metals Society of China,2014,24(8):2468.
26 Wang Z, Huang B, Qi L, et al. Modeling of the dynamic recrystallization behavior of Csf/AZ91D magnesium matrix composites during hot compression process[J].Journal of Alloys & Compounds,2017,708:328.
27 Liu D, Liu Y, Zhao Y, et al. The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biome-dical application[J].Materials Science & Engineering C,2017,77:690.
28 Suresh K, Dharmendra C, Rao K P, et al. Processing map of AZ31-1Ca-1.5vol.% nano-alumina composite for hot working[J].Materials & Manufacturing Processes,2015,30(10):1161.
29 Qu H, Hou H, Li P, et al. The effect of thermal cycling in superplastic diffusion bonding of heterogeneous duplex stainless steel[J].Materials & Design,2016,96:499.
30 Li D, Chen G, Jiang L, et al. Effect of thermal cycling on the mechanical properties of Cf/Al composites[J].Materials Science & Engineering A,2013,586(6):330.
31 Syed A K, Zhang X, Moffatt J E, et al. Effect of temperature and thermal cycling on fatigue crack growth in aluminium reinforced with glare bonded crack retarders[J].International Journal of Fatigue,2017,98:53.
32 Jin P P, Zhang F, Guo Y H, et al. Effect of applied stress combined with thermal cycling on plasticity of Mg2B2O5w/AZ31B composites[J].Transactions of Nonferrous Metals Society of China,2012,22(10):2768.
33 Shi Y, Jin P, Wang J. Effect of thermal cycling combined with applied stresses on deformation behavior of ZnO/Mg2B2O5w/AZ91D composite[J].Foundry Technology,2013,34(6):668(in Chinese).
师亚娟,金鹏培,王金辉.加载热循环对ZnO/Mg2B2O5w/AZ91D复合材料变形的影响[J].铸造技术,2013,34(6):668.
34 Zhu S M, Gibson M A, Easton M A, et al. The relationship between microstructure and creep resistance in die-cast magnesium-rare earth alloys[J].Scripta Materialia,2010,63(7):698.
35 Han L I, Du W B, Li J H, et al. Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy[J].Transactions of Nonferrous Metals Society of China,2010,20(7):1212.
36 Labib F, Mahmudi R, Ghasemi H M. Impression creep behavior of extruded Mg-SiCp composites[J].Materials Science & Engineering A,2015,640:91.
37 Tian J, Shi Z Q. Creep mechanism and creep constitutive model of aluminum silicate short-fiber-reinforced magnesium matrix composite[J].Transactions of Nonferrous Metals Society of China,2014,24(3):632.
38 Katsarou L, Mounib M, Lefebvre W, et al. Microstructure, mechanical properties and creep of magnesium alloy Elektron21 reinforced with AlN nanoparticles by ultrasound-assisted stirring[J].Materials Science & Engineering A,2016,659:84.
39 Deng K K, Li J C, Fan J F, et al. Interfacial characteristic of as-deformed SiCp-reinforced magnesium matrix composite[J].Transactions of Nonferrous Metals Society of China,2014,27(5):885.
40 Zhang L, Wang Q, Liao W, et al. Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91D magnesium composites reinforced by SiC nanoparticles[J].Materials Characterization,2017,126:17.
41 Sabetghadam-Isfahani A, Abbasi M, Sharifi S M H, et al. Microstructure and mechanical properties of carbon nanotubes/AZ31 magnesium composite gas tungsten arc welding filler rods fabricated by powder metallurgy[J].Diamond & Related Materials,2016,69:160.
42 Daudin R, Terzi S, Mallmann C, et al. Indirect improvement of high temperature mechanical properties of a Mg-based alloy Elektron21 by addition of AlN nanoparticles[J].Materials Science & Enginee-ring A,2017,688:76.
43 Selvam B, Marimuthu P, Narayanasamy R, et al. Dry sliding wear behaviour of zinc oxide reinforced magnesium matrix nano-compo-sites[J].Materials & Design,2014,58(6):475.
44 Zhang H, Zhao Y, Yan Y, et al. Microstructure evolution and mechanical properties of Mg matrix composites reinforced with Al and nano SiC particles using spark plasma sintering followed by hot extrusion[J].Journal of Alloys & Compounds,2017,725:652.
45 Shen M J, Wang X J, Zhang M F, et al. Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites[J].Composites Science & Technology,2015,118:85.
46 Xiang S L, Gupta M, Wang X J, et al. Enhanced overall strength and ductility of magnesium matrix composites by low content of graphene nanoplatelets[J].Composites Part A Applied Science & Ma-nufacturing,2017,100:183.
47 Garcés G, Máthis K, Pérez P, et al. Effect of reinforcing shape on twinning in extruded magnesium matrix composites[J].Materials Science & Engineering A,2016,666:48.
48 Guo W, Wang Q, Ye B, et al. Enhanced microstructure homogeneity and mechanical properties of AZ31-Si composite by cyclic closed-die forging[J].Journal of Alloys & Compounds,2013,552(10):409.
49 Deng S Q, Yang L, Wang Y L, et al. Study on microstructure and properties of TiCp/Mg composite material prepared by combination of powder metallurgy and multiple forging[J].Light Alloy Fabrication Technology,2016,44(7):48(in Chinese).
邓世岐,杨琳,王亚丽,等.粉末冶金结合多向锻造制备TiCp/Mg复合材料的组织和性能研究[J].轻合金加工技术,2016,44(7):48.
50 Johnson G R, Cook W H. Lagrangian EPIC code computations for oblique, yawed-rod impacts onto thin-plate and spaced-plate targets at various velocities[J].International Journal of Impact Engineering,1993,14(1-4):373.
51 Sellars C M, Mctegart W J. On the mechanism of hot deformation[J].Acta Metallurgica,1966,14(9):1136.
52 Garofalo F, Butrymowicz D B. Fundamentals of creep and creep-rupture in metals[J].Physics Today,1966,19(5):100.
53 Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J].Journal of Applied Physics,1944,15(1):22.
54 Liu R, Cao W, Fan T, et al. Development of processing maps for 3 vol.% TiCp/AZ91D composites material[J].Materials Science & Engineering A,2010,527(18-19):4687.
55 Deng K K, Li J C, Xu F J, et al. Hot deformation behavior and processing maps of fine-grained SiCp/AZ91 composite[J].Materials & Design,2015,67:72.
56 Wang Z, Qi L, Wang G, et al. Constitutive equation for the hot deformation behavior of Csf/AZ91D composites and its validity for numerical simulation[J].Mechanics of Materials,2016,102:90.
57 Zhong T, Rao K P, Prasad Y V R K, et al. Hot deformation mechanisms, microstructure and texture evolution in extruded AZ31-nano-alumina composite[J].Materials Science & Engineering A,2014,589(2):41.
58 Liu Z Y, Huang T T, Liu W J, et al. Dislocation mechanism for dynamic recrystallization in twin-roll casting Mg-5.51Zn-0.49Zr magnesium alloy during hot compression at different strain rates[J].Tran-sactions of Nonferrous Metals Society of China,2016,26(2):378.
59 Cai Z, Chen F, Ma F, et al. Dynamic recrystallization behavior and hot workability of AZ41M magnesium alloy during hot deformation[J].Journal of Alloys & Compounds,2016,670(3):55.
60 Xu W, Jin X, Shan D, et al. Study on the effect of solution treatment on hot deformation behavior and workability of Mg-7Gd-5Y-0.6Zn-0.8Zr magnesium alloy[J].Journal of Alloys & Compounds,2017,720:309.
61 Cai Y, Wan L, Guo Z H, et al. Hot deformation characteristics of AZ80 magnesium alloy: Work hardening effect and processing parameter sensitivities[J].Materials Science & Engineering A,2017,687:113.
62 Mirzadeh H. Constitutive behaviors of magnesium and Mg-Zn-Zr alloy during hot deformation[J].Materials Chemistry & Physics,2015,152:123.
63 Fan J F, Hua Z, Dong H, et al. Effects of processing technologies on mechanical properties of SiC particulate reinforced magnesium matrix composites[J].Journal of Wuhan University of Technology,2014,29(4):769.
64 Yu W, Zhao H, Wang X, et al. Synthesis and characterization of textured Ti2AlC reinforced magnesium composite[J].Journal of Alloys & Compounds,2017,730:68.
65 Paramsothy M, Chan J, Kwok R, et al. Enhanced mechanical response of magnesium alloy ZK60A containing Si3N4 nanoparticles[J].Composites Part A: Applied Science & Manufacturing,2011,42(12):2093.66 Zhou S S, Deng K K, Li J C, et al. Hot deformation behavior and workability characteristics of bimodal size SiCp/AZ91 magnesium matrix composite with processing map[J].Materials & Design,2014,64(64):177.
67 Zhang L, Wang Q, Liu G, et al. Effect of SiC particles and the particulate size on the hot deformation and processing map of AZ91 magnesium matrix composites[J].Materials Science & Engineering A,2017,707(7):315.
68 Shen M J, Wang X J, Ying T, et al. Characteristics and mechanical properties of magnesium matrix composites reinforced with micron/submicron/nano SiC particles[J].Journal of Alloys & Compounds,2016,686:831.
69 Zhu Y P, Jin P P, Fei W D, et al. Effects of Mg2B2O5 whiskers on microstructure and mechanical properties of AZ31B magnesium matrix composites[J].Materials Science & Engineering A,2016,684(27):205.
70 Wang X J, Hu X S, Nie K B, et al. Hot extrusion of SiCp/AZ91 Mg matrix composites[J].Transactions of Nonferrous Metals Society of China,2012,22(8):1912.
71 Mirzadeh H. Constitutive analysis of Mg-Al-Zn magnesium alloys during hot deformation[J].Mechanics of Materials,2014,77(77):80.
72 Su Z, Wan L, Sun C, et al. Hot deformation behavior of AZ80 magnesium alloy towards optimization of its hot workability[J].Mate-rials Characterization,2016,122:90.
73 Abbassi F, Srinivasan M, Loganathan C, et al. Experimental and numerical analyses of magnesium alloy hot workability[J].Journal of Magnesium & Alloys,2016,4(4):295.
[1] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[2] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[3] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[4] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[5] 刘少飞, 屈银虎, 王崇楼, 王彦龙, 成小乐, 王柯. 金属和合金高温变形过程本构模型的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2241-2251.
[6] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[7] 曹秀中, 赵冰, 韩秀全, 侯红亮, 曲海涛. 连续SiC纤维增强钛基复合材料横向高温变形机理研究*[J]. 《材料导报》期刊社, 2017, 31(8): 88-93.
[8] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[9] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[10] 胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed