Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (16): 144-149    https://doi.org/10.11896/j.issn.1005-023X.2017.016.030
  计算模拟 |
HMn62-3-3合金的热变形行为及热加工图*
胡勇, 陈威, 李晓诚, 彭和思, 丁雨田
兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室, 兰州 730050
Hot Deformation Behavior and Hot Processing Map for HMn62-3-3 Alloy
HU Yong, CHEN Wei, LI Xiaocheng, PENG Hesi, DING Yutian
State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 1657KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过Gleeble-1500热模拟机在500~600 ℃、应变速率0.01~10 s-1条件下的近等温热模拟压缩试验,建立合金本构方程和热加工图。结果表明:HMn62-3-3合金在热变形过程中发生动态再结晶行为,其峰值应力随变形温度的升高或应变速率的降低而降低;采用Arrhenius方程能够较好地拟合HMn62-3-3合金的流变行为,其热变形激活能为201.525 kJ·mol-1;根据DMM模型,计算并建立了HMn62-3-3材料的热加工图,由此确定热变形过程中的最佳工艺参数为变形温度610~640 ℃,应变速率为2~10 s-1
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡勇
陈威
李晓诚
彭和思
丁雨田
关键词:  HMn62-3-3合金  热压缩模拟  本构方程  热加工图    
Abstract: Isothermal compression tests of HMn62-3-3 alloy at temperatures ranging from 560 to 600 ℃ and strain rates from 0.01-10 s-1 were performed on the Gleeble-1500 thermo-simulation machine, the constitutive equation of HMn62-3-3 alloy and hot processing maps during the hot deformation process were established. The results showed that flow stress of HMn62-3-3 alloy decreased with the increase of deformation temperature and the decrease of strain rate. Under the experimental conditions, HMn62-3-3 alloy had the feature of dynamic recrystallization. Arrhenius hyperbolic sine function can well describe the constitutive equation of HMn62-3-3 alloy and the activation energy is about 201.525 kJ·mol-1. Processing maps were established based on the dynamic material model (DMM), the optimum ranges of deformation temperatures and rates are 610-640 ℃ and 2-10 s-1, respectively.
Key words:  HMn62-3-3 alloy    hot compression simulation    constitutive equation    processing map
               出版日期:  2017-08-25      发布日期:  2018-05-07
ZTFLH:  TG146.1  
基金资助: 甘肃省重大科技专项项目(145RTSA004)
作者简介:  胡勇:男,1977年生,博士,副教授,研究方向为铜合金、镍基合金 E-mail:luthuyong@163.com 陈威:男,1991年生,硕士,研究方向为铜合金变形、镍基合金 E-mail:lychenwei@foxmail.com
引用本文:    
胡勇, 陈威, 李晓诚, 彭和思, 丁雨田. HMn62-3-3合金的热变形行为及热加工图*[J]. 《材料导报》期刊社, 2017, 31(16): 144-149.
HU Yong, CHEN Wei, LI Xiaocheng, PENG Hesi, DING Yutian. Hot Deformation Behavior and Hot Processing Map for HMn62-3-3 Alloy. Materials Reports, 2017, 31(16): 144-149.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.016.030  或          http://www.mater-rep.com/CN/Y2017/V31/I16/144
1 Zhang W D, Yang J, Dang J Z, et al. Effects of cryogenic treatment on microstructure and mechnial properties of brass[J]. Trans Mater Heat Treat,2013,34(1):127(in Chinese).
张文达, 杨晶, 党惊知, 等. 深冷处理对黄铜组织与力学性能的影响[J]. 材料热处理学报,2013,34(1):127.
2 Chen Y S, Fu Z, Liu W J. Research status of high strength and anti-attrition brass[J]. Nonferr Met Sci Eng,2012,3(5):23(in Chinese).
陈一胜, 傅政, 刘位江. 高强耐磨黄铜的研究现状[J]. 有色金属科学与工程,2012,3(5):23.
3 Li S N, Chen Y, Ye J W, et al. The manufacturing status and trend of development of synchronizer rings[J]. J Hubei University of Technology,2012,27(1):114(in Chinese).
李四年, 陈园, 叶甲旺, 等. 汽车同步器齿环的生产现状与发展前景[J]. 湖北工业大学学报,2012,27(1):114.
4 Li F L, Fu R, Feng D, et al. Hot deformation characteristics of Ni-base wrought superalloy CDS&W FGH96[J]. Chin J Rare Met,2015,39(3):201(in Chinese).
李福林, 付锐, 冯涤, 等. 镍基变形高温合金CDS&W FGH96热变形行为研究[J]. 稀有金属,2015,39(3):201.
5 Wen D X, Lin Y C, Chen J, et al. Work-hardening behavior of typical solution-treated and aged Ni-based superalloy during hot defor-mation[J]. J Alloys Compd,2015,618(5):372.
6 Zhang D X, Wen Z X, Yue Z F. Hot deformation behavior and constitutive model of GH3230 alloy[J]. Chin J Rare Met,2014,38(6):986(in Chinese).
张冬旭, 温志勋, 岳珠峰. GH3230 高温合金热变形行为及本构方程模型研究[J]. 稀有金属,2014,38(6):986.
7 Zhang B, Zhu L L, Wang K S, et al. High temperature plastic deformation behavior and constitutive equation of pure nickel[J]. Chin J Rare Met,2015,39(5):406(in Chinese).
张兵, 朱乐乐, 王快社, 等. 纯镍的高温塑性变形行为及本构方程[J]. 稀有金属,2015,39(5):406.
8 Liu C L, Huang G J. Hot extrusion processing and microstructural analysis of 6082 aluminum alloy[J]. Mater Rev:Res,2011,25(9):266(in Chinese).
刘承禄, 黄光杰. 6082铝合金热挤压成形行为及微观组织研究[J]. 材料导报:研究篇,2011,25(9):266.
9 Gan W P, Wang Y R, Chen T P, et al. Research of hot deformation behavior of 6013 aluminun alloy [J]. Mater Rev,2006,20(5):111(in Chinese).
甘卫平, 王义仁, 陈铁平, 等. 6013铝合金热变形行为研究[J]. 材料导报,2006,20(5):111.
10 Zhang W, Yang F L, Gan W P, et al. Study of the hot deformation behavior of the Al-35Si high silicon aluminum alloy [J]. Mater Rev,2005,19(10):136(in Chinese).
张伟, 杨伏良, 甘卫平, 等. Al-35Si 高硅合金热变形行为的研究[J]. 材料导报,2005,19(10):136.
11 Wang M H, Chen M L, Wang R, et al. High temperature flow stress model and hot processing map for 2Cr12NiMo1W1V supercri-tical steel[J]. J Central South University: Sci Technol,2016,47(3):741(in Chinese).
王梦寒, 陈明亮, 王瑞, 等. 2Cr12NiMo1W1V 超临界钢高温流变应力模型及热加工图[J]. 中南大学学报:自然科学版,2016,47(3):741.
12 Kang F, Yang E C, Lin J, et al. Study on hot deformation behavior of high strength construction steel 34CrNiMo6 for crankshafts[J]. Mater Rev:Res,2013,27(1):49(in Chinese).
康凤, 杨鄂川, 林军, 等. 曲轴用34CrNiMo6 高强结构钢的热变形行为研究[J]. 材料导报:研究篇,2013,27(1):49.
13 Ma Y, Liu J S. Research on dynamic recrystallization behavior and microstructure evolution of steel 30Cr2Ni4MoV[J]. Forging Samping Technol,2016,41(3):129(in Chinese).
马越, 刘建生. 30Cr2Ni4MoV 钢动态再结晶及微观组织演变研究[J]. 锻压技术,2016,41(3):129.
14 Qi R S, Jing Y H, Liu X G, et al. Hot deformation behavior and hot processing map for 300M high strength steel[J]. J Plast Eng,2016,23(2):130(in Chinese).
祁荣胜, 景阳端, 刘鑫刚, 等. 300M高强钢热变形行为及其热加工图[J]. 塑性工程学报,2016,23(2):130.
15 Wang Y H, Gong B, Li B. Behavior of H62 brass alloy hot deformation[J]. Nonferr Met,2010,62(2):7(in Chinese).
王延辉, 龚冰, 李冰. H62黄铜合金热变形行为[J]. 有色金属,2010,6(2):7.
16 Yin T, Tian B H, Zhang Y, et al. Preparation of Cu-W-TiC composites and its hot deformation characteristics[J]. Chin J Nonferr Met,2015,25(9):2445(in Chinese).
殷婷, 田保红, 张毅, 等. 放电等离子烧结Cu-W-TiC复合材料的制备及其热变形特性[J]. 中国有色金属学报,2015,25(9):2445.
17 Zhang Y, Chai Z, Sun H L, et al. Hot deformation behaviors of Cu-Cr-Zr-P alloy based on processing map[J]. Trans Mater Heat Treat,2016,37(3):230(in Chinese).
张毅, 柴哲, 孙慧丽, 等. 基于热加工图的Cu-Cr-Zr-P合金的热变形特性[J]. 材料热处理学报,2016,37(3):230.
18 He Z B, Li H Z, Liang X P. Hot deformation behavior and proces-sing map of Al-Zn-Mg-Sc-Zr alloy[J]. Chin J Nonferr Met,2011,2(6):1220(in Chinese).
何振波, 李慧中, 梁霄鹏. Al-Zn-Mg-Sc-Zr合金的热变形行为及热加工图[J]. 中国有色金属学报,2011,21(6):1220.
19 Liu P F, Liu D, Luo Z J. Flow behavior and dynamic recrystallization model for GH761 superalloy during hot deformation[J]. Rare Met Mater Eng,2009,38(2):275(in Chinese).
刘鹏飞, 刘东, 罗子建. GH761合金的热变形行为与动态再结晶模型[J]. 稀有金属材料与工程,2009,38(2):275.
20 Zhou J M, Qi L H, Chen G D. Investigation on the constitutive relationship of materials forming in high temperature[J]. Mech Sci Technol,2005,24(2):212(in Chinese).
周计明, 齐乐华, 陈国定. 热成形中本构关系建模方法综述[J]. 机械科学与技术,2005,24(2):212.
21 Deng Y, Yin Z M, Huang J W. Hot deformation behavior and microstructural evolution of homogenized 7050 aluminum alloy during compression at elevated temperature[J]. Mater Sci Eng A,2011,528:1780.
22 Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[J]. J Appl Phys,1944,15(1):22.
23 Prasad Y V R K, Gegel H L, Doaraivelu S M. Modeling of dynamic material behavior in hot deformation forging Ti-6242[J]. Metall Trans A,1984,15A(10):1883.
24 Rao K P, Doraivelu S M, Roshan H M. Deformation processing of an aluminum alloy containing particles: Studies on Al-5 pct Si alloy 4043[J]. Metall Trans A,1983,14A(8):1671.
25 Zhang R P, Li F G, Wang X N. Determining processing maps of FGH96 superalloy[J]. J Northwestern Polytechnical University,2007,25(5):652(in Chinese).
张仁鹏, 李付国, 王晓娜. FGH96合金的热变形行为及其热加工图[J]. 西北工业大学学报,2007,25(5):652.
26 Srinivasan N, Prasad Y. Hot working characteristics of nimonic75, 80A and 90 superalloys: A comparison using processing maps[J]. J Mater Process Technol,1995,51(1):171.
[1] 高志玉, 盛凯, 康宇, 张旭, 潘涛. 一种新型高淬透性Ni-Cr-Mo-B钢的热变形本构分析[J]. 材料导报, 2019, 33(4): 694-698.
[2] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[3] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[4] 薛克敏, 薄冬青, 李萍. 轧制态7A60铝合金的热压缩显微组织及流变行为[J]. 《材料导报》期刊社, 2018, 32(8): 1306-1310.
[5] 刘贤翠, 潘冶, 陆韬, 唐智骄, 何为桥. 3003铝合金蠕变行为与本构方程[J]. 材料导报, 2018, 32(6): 1015-1019.
[6] 袁战伟, 李付国, 王春伟, 王瑜, 郭亚杰, 周亮. 基于Murty准则的SiCp/Al复合材料热加工图研究[J]. 《材料导报》期刊社, 2018, 32(4): 657-661.
[7] 吴萍萍, 张静静. 镁基复合材料高温变形研究进展[J]. 材料导报, 2018, 32(17): 3041-3050.
[8] 赵正阳, 孙明月, 孙建亮. 含稀土H13钢热变形行为及热加工图研究*[J]. CLDB, 2017, 31(8): 149-155.
[9] 常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
[10] 孙倩,陈冷. Cu-3.0Ni-0.64Si合金的热变形行为[J]. 材料导报编辑部, 2017, 31(22): 90-94.
[11] 陈自鹏, 石少卿, 罗伟铭, 孙建虎, 范兰心. 高密度聚乙烯材料在大变形条件下的数值模拟研究*[J]. 《材料导报》期刊社, 2017, 31(20): 135-139.
[12] 罗锐, 程晓农, 郑琦, 朱晶晶, 王皎, 刘天, 陈光, 杨乔. 新型含铝奥氏体耐热合金Fe-20Cr-30Ni-0.6Nb-2Al-Mo的动态再结晶行为*[J]. 《材料导报》期刊社, 2017, 31(18): 136-140.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed