Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 136-139    https://doi.org/10.11896/j.issn.1005-023X.2017.06.027
  计算模拟 |
基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图
常若寒1, 蔡中义1, 程丽任2, 车朝杰1, 迟佳轩1
1 吉林大学辊锻工艺研究所,长春 130025;
2 中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,长春 130022
Flow Stress Prediction Model and Processing Map of Mg-Sm-Zn-Zr Alloy
Based on GA-BP Neural Network
CHANG Ruohan1, CAI Zhongyi1, CHENG Liren2, CHE Chaojie1, CHI Jiaxuan1
1 Roll Forging Research Institute, Jilin University, Changchun 130025;
2 State Key Laboratory of Rare Earth Resources
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
下载:  全 文 ( PDF ) ( 2239KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Gleeble-1500D试验机对新型Mg-Sm-Zn-Zr合金进行等温压缩实验,得到了该合金在350~450 ℃、0.001~1 s-1条件下的真应力-应变曲线,应用遗传算法优化的BP神经网络建立起合金的应力预测模型,并对所建预测模型和考虑应变的Arrhenius本构模型进行了对比,采用预测数据并应用Murthy失稳准则绘制出该合金的热加工图,最后结合微观组织分析所绘制热加工图的合理性。结果表明,GA-BP模型预测值和实验值间的相关性系数为0.999,平均相对误差为1.469%,较应变补偿本构模型预测精度更高;热加工图设计合理,有效确认温度400~450 ℃、应变速率0.001~0.03 s-1是最佳热加工范围,合金在该区域发生了动态再结晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常若寒
蔡中义
程丽任
车朝杰
迟佳轩
关键词:  Mg-Sm-Zn-Zr合金  GA-BP模型  热加工图  微观组织    
Abstract: The flow stress behavior of Mg-Sm-Zn-Zr alloy was studied by isothermal compression experiment on Gleeble-1500D thermal-mechanical test machine at deformation temperatures of 350-450 ℃ and strain rates of 0.001-1 s-1. The genetic algorithm BP neural network (GA-BP) was developed to predict the flow stress, and the comparative study on GA-BP model and strain compensated Arrhenius-type constitutive model was presented. Based on the prediction stress, the processing map was established under instability criteria of Murthy, finally the rationality of the designed processing map was verified by microstructure. The results showed that the correlation coefficient was 0.999 and the average relative error was 1.469% for the GA-BP model, which indicated that the GA-BP model could be more accurate in predicting the flow stress than constitutive model considering the compensation of strain. The processing map was properly designed, and the map confirmed the temperatures of 400-450 ℃ and strain rates of 0.001-0.03 s-1 as the optimum process parameters. The dynamic recrystallization (DRX) occurred in the deformed samples under the above parameters.
Key words:  Mg-Sm-Zn-Zr alloy    GA-BP model    processing map    microstructure
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG156  
基金资助: 国家自然科学基金(51575231)
通讯作者:  蔡中义:男,1963年生,教授,研究方向为材料塑性成型,E-mail:caizy@jlu.edu.cn   
作者简介:  常若寒:男,1991年生,硕士研究生,主要研究方向为稀土镁合金高温变形,E-mail:changrh14@mails.jlu.edu.cn
引用本文:    
常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
CHANG Ruohan, CAI Zhongyi, CHENG Liren, CHE Chaojie, CHI Jiaxuan. Flow Stress Prediction Model and Processing Map of Mg-Sm-Zn-Zr Alloy
Based on GA-BP Neural Network. Materials Reports, 2017, 31(6): 136-139.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.027  或          https://www.mater-rep.com/CN/Y2017/V31/I6/136
1 Mordike B L, Ebert T. Magnesium: properties-applications-potential [J]. Mater Sci Eng A,2001,302(1):37.
2 Chen Q, Xia X S, Yuan B G, et al. Hot workability behavior of as-cast Mg-Zn-Y-Zr alloy[J]. Mater Sci Eng A,2014,593:38.
3 Yu H, Kim Youngmin, Yu H S, et al. Hot deformation behavior and hot workability of Mg-Zn-Zr-Ce alloy[J]. Acta Metall Sin,2012,48(9):1123(in Chinese).
余晖, Kim Youngmin, 于化顺, 等. Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究[J]. 金属学报,2012,48(9):1123.
4 陈振华. 镁合金[M]. 北京: 化学工业出版社,2004:2.
5 Rokhlin L L. Magnesium alloys containing rare earth metals: Structure and properties [M]. Bocca Raton:CRC Press,2003.
6 Wu D G, Yan S H, Li Z A, et al. Effect of samarium on corrosion behavior of as-cast AZ92 magnesium alloy[J]. Chin J Rare Metals,2013,37(2):199(in Chinese).
吴道高, 颜世宏, 李宗安, 等. 稀土Sm对 AZ92镁合金耐腐蚀性能的影响[J].稀有金属,2013,37(2):199.
7 Yang M, Pan F. Comparative studies on as-cat microstructures and mechanical properties between Mg-3Ce-1.2Mn-0.9Sc and Mg-3Ce-1.2Mn-1Zn magnesium alloys [J]. Trans Nonferrous Metals Soc China,2012,22(1):53.
8 Zheng J, Wang Q, Jin Z, et al. Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg-0.5Zn-0.4Zr based alloys [J]. Mater Sci Eng A,2010,527(7):1677.
9 Xia X, Luo A A, Stone D S. Precipitation sequence and kinetics in a Mg-4Sm-1Zn-0.4 Zr (wt%) alloy[J]. J Alloys Compd,2015,649:649.
10 Li H Y, Wang X F, Wei D D, et al. A comparative study on modified Zerilli-Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel[J]. Mater Sci Eng A,2012,536:216.
11 Yue Y W, Wen T, Liu L T, et al. Predicted processing map of TC4 titanium alloy based on BP neural network[J]. Chin J Rare Metals,2014,38(4):567(in Chinese).
岳远旺, 温彤, 刘澜涛, 等. 基于BP神经网络预测的TC4热加工图[J]. 稀有金属,2014,38(4):567.
12 Haghdadi N, Zarei-Hanzaki A, Khalesian A R, et al. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy[J]. Mater Des,2013,49:386.
13 Robi P S, Dixit U S. Application of neural networks in generating processing map for hot working[J]. J Mater Process Technol,2003,142(1):289.
14 Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall Trans A,1984,15(10):1883.
15 Chen Y F, Jiang H D, Tang M. Constitutive equation of 38MnVTi steel and processing map[J]. Mater Rev:Res,2014,28(11):149(in Chinese).
陈元芳, 江华德, 汤萌. 38MnVTi 钢本构方程及加工图[J]. 材料导报:研究篇,2014,28(11):149.
16 Chen Q, Wang Y. Hot working behavior of delta-processed GH4169 alloy[J]. Chin J Nonferrous Metals,2015,25(9):2727(in Chinese).
陈前, 王岩. δ相时效态GH4169合金的热加工行为[J]. 中国有色金属学报,2015,25(10):2727.
17 Lin Y C, Li L T, Xia Y C, et al. Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy[J]. J Alloys Compd,2013,550:438.
18 Narayana Murty S V S, Nageswara Rao B, at al. Instability criteria for hot deformation of materials[J]. Int Mater Rev,2000,45(1):15.
[1] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[2] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[3] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[6] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[7] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[8] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[9] 朱轩,杨晓益, 陆鑫, 杨书汉. 电弧脉冲对6005A-T6铝合金CMT-P焊接接头组织和性能的影响[J]. 材料导报, 2024, 38(23): 23090035-7.
[10] 王沛锦, 卓家乐, 艾桃桃, 董洪峰. L12型纳米有序相析出强化(FeNiCoCr)93Al5Ti2高熵合金[J]. 材料导报, 2024, 38(22): 23110207-5.
[11] 张志强, 杨倩, 于子鸣, 张天刚, 路学成, 王浩. 激光功率对Ti6Al4V/NiCr-Cr3C2熔覆层宏微观组织及性能的影响[J]. 材料导报, 2024, 38(2): 22100243-7.
[12] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[13] 郭伟玲, 邢志国, 李鹏, 马国政, 王海斗. 冷喷涂铜基复合涂层及后处理技术的研究现状[J]. 材料导报, 2024, 38(19): 23010049-13.
[14] 杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
[15] 郭晖, 曹晓卿, 孙逸舟, 林鹏, 刘亚玲, 李培友. 轻质高熵合金微观组织及力学性能研究进展[J]. 材料导报, 2024, 38(18): 23020177-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed