Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 136-139    https://doi.org/10.11896/j.issn.1005-023X.2017.06.027
  计算模拟 |
基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图
常若寒1, 蔡中义1, 程丽任2, 车朝杰1, 迟佳轩1
1 吉林大学辊锻工艺研究所,长春 130025;
2 中国科学院长春应用化学研究所,稀土资源利用国家重点实验室,长春 130022
Flow Stress Prediction Model and Processing Map of Mg-Sm-Zn-Zr Alloy
Based on GA-BP Neural Network
CHANG Ruohan1, CAI Zhongyi1, CHENG Liren2, CHE Chaojie1, CHI Jiaxuan1
1 Roll Forging Research Institute, Jilin University, Changchun 130025;
2 State Key Laboratory of Rare Earth Resources
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022
下载:  全 文 ( PDF ) ( 2239KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用Gleeble-1500D试验机对新型Mg-Sm-Zn-Zr合金进行等温压缩实验,得到了该合金在350~450 ℃、0.001~1 s-1条件下的真应力-应变曲线,应用遗传算法优化的BP神经网络建立起合金的应力预测模型,并对所建预测模型和考虑应变的Arrhenius本构模型进行了对比,采用预测数据并应用Murthy失稳准则绘制出该合金的热加工图,最后结合微观组织分析所绘制热加工图的合理性。结果表明,GA-BP模型预测值和实验值间的相关性系数为0.999,平均相对误差为1.469%,较应变补偿本构模型预测精度更高;热加工图设计合理,有效确认温度400~450 ℃、应变速率0.001~0.03 s-1是最佳热加工范围,合金在该区域发生了动态再结晶。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常若寒
蔡中义
程丽任
车朝杰
迟佳轩
关键词:  Mg-Sm-Zn-Zr合金  GA-BP模型  热加工图  微观组织    
Abstract: The flow stress behavior of Mg-Sm-Zn-Zr alloy was studied by isothermal compression experiment on Gleeble-1500D thermal-mechanical test machine at deformation temperatures of 350-450 ℃ and strain rates of 0.001-1 s-1. The genetic algorithm BP neural network (GA-BP) was developed to predict the flow stress, and the comparative study on GA-BP model and strain compensated Arrhenius-type constitutive model was presented. Based on the prediction stress, the processing map was established under instability criteria of Murthy, finally the rationality of the designed processing map was verified by microstructure. The results showed that the correlation coefficient was 0.999 and the average relative error was 1.469% for the GA-BP model, which indicated that the GA-BP model could be more accurate in predicting the flow stress than constitutive model considering the compensation of strain. The processing map was properly designed, and the map confirmed the temperatures of 400-450 ℃ and strain rates of 0.001-0.03 s-1 as the optimum process parameters. The dynamic recrystallization (DRX) occurred in the deformed samples under the above parameters.
Key words:  Mg-Sm-Zn-Zr alloy    GA-BP model    processing map    microstructure
               出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TG156  
基金资助: 国家自然科学基金(51575231)
通讯作者:  蔡中义:男,1963年生,教授,研究方向为材料塑性成型,E-mail:caizy@jlu.edu.cn   
作者简介:  常若寒:男,1991年生,硕士研究生,主要研究方向为稀土镁合金高温变形,E-mail:changrh14@mails.jlu.edu.cn
引用本文:    
常若寒, 蔡中义, 程丽任, 车朝杰, 迟佳轩. 基于遗传BP网络的Mg-Sm-Zn-Zr合金应力预测模型及加工图[J]. 《材料导报》期刊社, 2017, 31(6): 136-139.
CHANG Ruohan, CAI Zhongyi, CHENG Liren, CHE Chaojie, CHI Jiaxuan. Flow Stress Prediction Model and Processing Map of Mg-Sm-Zn-Zr Alloy
Based on GA-BP Neural Network. Materials Reports, 2017, 31(6): 136-139.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.027  或          http://www.mater-rep.com/CN/Y2017/V31/I6/136
1 Mordike B L, Ebert T. Magnesium: properties-applications-potential [J]. Mater Sci Eng A,2001,302(1):37.
2 Chen Q, Xia X S, Yuan B G, et al. Hot workability behavior of as-cast Mg-Zn-Y-Zr alloy[J]. Mater Sci Eng A,2014,593:38.
3 Yu H, Kim Youngmin, Yu H S, et al. Hot deformation behavior and hot workability of Mg-Zn-Zr-Ce alloy[J]. Acta Metall Sin,2012,48(9):1123(in Chinese).
余晖, Kim Youngmin, 于化顺, 等. Mg-Zn-Zr-Ce合金高温变形行为与热加工性能研究[J]. 金属学报,2012,48(9):1123.
4 陈振华. 镁合金[M]. 北京: 化学工业出版社,2004:2.
5 Rokhlin L L. Magnesium alloys containing rare earth metals: Structure and properties [M]. Bocca Raton:CRC Press,2003.
6 Wu D G, Yan S H, Li Z A, et al. Effect of samarium on corrosion behavior of as-cast AZ92 magnesium alloy[J]. Chin J Rare Metals,2013,37(2):199(in Chinese).
吴道高, 颜世宏, 李宗安, 等. 稀土Sm对 AZ92镁合金耐腐蚀性能的影响[J].稀有金属,2013,37(2):199.
7 Yang M, Pan F. Comparative studies on as-cat microstructures and mechanical properties between Mg-3Ce-1.2Mn-0.9Sc and Mg-3Ce-1.2Mn-1Zn magnesium alloys [J]. Trans Nonferrous Metals Soc China,2012,22(1):53.
8 Zheng J, Wang Q, Jin Z, et al. Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg-0.5Zn-0.4Zr based alloys [J]. Mater Sci Eng A,2010,527(7):1677.
9 Xia X, Luo A A, Stone D S. Precipitation sequence and kinetics in a Mg-4Sm-1Zn-0.4 Zr (wt%) alloy[J]. J Alloys Compd,2015,649:649.
10 Li H Y, Wang X F, Wei D D, et al. A comparative study on modified Zerilli-Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel[J]. Mater Sci Eng A,2012,536:216.
11 Yue Y W, Wen T, Liu L T, et al. Predicted processing map of TC4 titanium alloy based on BP neural network[J]. Chin J Rare Metals,2014,38(4):567(in Chinese).
岳远旺, 温彤, 刘澜涛, 等. 基于BP神经网络预测的TC4热加工图[J]. 稀有金属,2014,38(4):567.
12 Haghdadi N, Zarei-Hanzaki A, Khalesian A R, et al. Artificial neural network modeling to predict the hot deformation behavior of an A356 aluminum alloy[J]. Mater Des,2013,49:386.
13 Robi P S, Dixit U S. Application of neural networks in generating processing map for hot working[J]. J Mater Process Technol,2003,142(1):289.
14 Prasad Y, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242[J]. Metall Trans A,1984,15(10):1883.
15 Chen Y F, Jiang H D, Tang M. Constitutive equation of 38MnVTi steel and processing map[J]. Mater Rev:Res,2014,28(11):149(in Chinese).
陈元芳, 江华德, 汤萌. 38MnVTi 钢本构方程及加工图[J]. 材料导报:研究篇,2014,28(11):149.
16 Chen Q, Wang Y. Hot working behavior of delta-processed GH4169 alloy[J]. Chin J Nonferrous Metals,2015,25(9):2727(in Chinese).
陈前, 王岩. δ相时效态GH4169合金的热加工行为[J]. 中国有色金属学报,2015,25(10):2727.
17 Lin Y C, Li L T, Xia Y C, et al. Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy[J]. J Alloys Compd,2013,550:438.
18 Narayana Murty S V S, Nageswara Rao B, at al. Instability criteria for hot deformation of materials[J]. Int Mater Rev,2000,45(1):15.
[1] 雷林, 杨庆波, 张志清, 樊祥泽, 李旭, 杨谋, 邓赞辉. AA2195铝锂合金多道次压缩行为及微观组织演变[J]. 材料导报, 2019, 33(z1): 348-352.
[2] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[3] 张冠星, 薛行雁, 龙伟民, 钟素娟, 孙华为, 董宏伟. BAg45CuZn钎料硫化处理组织和性能演变特性[J]. 材料导报, 2019, 33(z1): 425-427.
[4] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[5] 徐强, 洪悦, 李楠, 伍翠兰. 气体氮碳共渗中NH3和CO流量对低碳钢渗层组织及其性能的影响[J]. 材料导报, 2019, 33(2): 330-334.
[6] 赵猛,张亮,熊明月. Sn-Cu系无铅钎料的研究进展及发展趋势[J]. 材料导报, 2019, 33(15): 2467-2478.
[7] 王剑豪,薛松柏,吕兆萍,王刘珏,刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[8] 孟强, 车倩颖, 王快社, 张坤, 王文, 黄丽颖, 彭湃, 乔柯. 铝铜异种材料搅拌摩擦焊接接头微观组织与性能[J]. 材料导报, 2019, 33(12): 2030-2034.
[9] 钱昊, 杨银辉, 曹建春, 苏煜森. Fe-18Cr-9Mn-1.1Ni-1.1Mo-0.2N节Ni型双相不锈钢高温热变形行为[J]. 材料导报, 2019, 33(12): 2040-2046.
[10] 陈龙, 司家勇, 刘松浩, 廖凯. 挤压态FGH4096合金的热变形行为及热加工图[J]. 材料导报, 2019, 33(12): 2047-2054.
[11] 陈宇强, 宋文炜, 潘素平, 刘文辉, 宋宇锋, 张浩. 沉积颗粒对7N01-T6铝合金疲劳裂纹扩展行为的影响[J]. 材料导报, 2019, 33(10): 1697-1701.
[12] 蔡惠坤, 翁泽钜, 顾开选, 王凯凯, 郑建朋, 王俊杰. 硬质合金深冷处理研究进展[J]. 材料导报, 2019, 33(1): 175-182.
[13] 丁雨田, 马元俊, 豆正义, 刘建军, 高钰璧, 孟斌. 固溶处理温度对GH3625合金热挤压管材微观组织和力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1311-1317.
[14] 张金祥, 欧阳希, 周健, 张济山. Cr含量降低对H13钢组织与力学性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1323-1327.
[15] 耿汝伟, 杜军, 魏正英, 魏培. 金属增材制造中微观组织相场法模拟研究进展[J]. 《材料导报》期刊社, 2018, 32(7): 1145-1150.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed