Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (6): 140-146    https://doi.org/10.11896/j.issn.1005-023X.2017.06.028
  计算模拟 |
基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响
武文红1, 牛恒茂2, 4, 赵燕茹3, 邢永明4
1 内蒙古工业大学信息工程学院, 呼和浩特 010051;
2 内蒙古建筑职业技术学院建筑工程学院, 呼和浩特 010070;

3 内蒙古工业大学土木工程学院, 呼和浩特 010051;
4 内蒙古工业大学理学院, 呼和浩特 010051
Effects of Fiber Distribution and Orientation Distribution Based on Image
Processing on Bending Properties of PVA Fiber Reinforced Cementitious Composites
WU Wenhong1, NIU Hengmao2,4, ZHAO Yanru3, XING Yongming4
1 College of Information Engineering, Inner Mongolia University of Technology, Hohhot 010051;
2 College of Construction
Engineering, Inner Mongolia Technical College of Construction, Hohhot 010070;
3 College of Civil Engineering,
Inner Mongolia University of Technology, Hohhot 010051;
4 College of Science, Inner Mongolia
University of Technology, Hohhot 010051
下载:  全 文 ( PDF ) ( 2757KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 聚乙烯醇(PVA)纤维增强水泥基材料的弯曲性能与纤维在水泥基体内的分布和取向分布相关。采用抛光断面后涂荧光粉的显微成像法,基于图像处理程序对PVA纤维在水泥基材料中的分布和取向分布进行量化测定,对不同基体结构特征影响纤维分布的机理进行了讨论。结合弯曲试验结果,研究了纤维分布和取向分布对材料弯曲性能的影响。纤维分布测定结果表明,均匀的基体结构特征利于纤维的分布,同时对于材料组分和加工制作过程完全相同的试件,纤维分布系数越大,试件的弯曲强度与韧性越大;纤维取向分布测定结果表明,乱向分布的纤维当其长度方向与抛光断面方向的角度接近90°分布概率越大,试件的弯曲韧性也越大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武文红
牛恒茂
赵燕茹
邢永明
关键词:  PVA纤维水泥基复合材料  荧光显微成像法  纤维分布  纤维取向分布  弯曲性能    
Abstract: Fiber distribution and orientation distribution play a key role in bending property of PVA fiber reinforced cementitious composites. PVA fibers distribution and orientation distribution based on image processing was quantitatively measured by fluorescence microscope images methods. Meanwhile, the effects of different formation of cementious matrix due to component adjusting on fibers distribution were discussed. Moreover, effects of fiber distribution and orientation distribution on bending properties of PVA fiber reinforced cementitious composites were comprehensively studied. The results of the distribution of PVA fibers showed that uniformity of the formation of cementious matrix was beneficial to good fibers distribution. At the same time, higher fiber distribution coefficient would lead to higher strength and ductility of the specimens with the same component and processing. The results of the orientation distribution of fibers showed that high distribution probability of orientation angle approaching to 90° between fiber length direction and the polishing surface direction contributed to high ductility of the specimens.
Key words:  polyvinyl alcohol (PVA) fiber reinforced cementitious composites    fluorescence microscope    fiber distribution    fiber orientation distribution    bending property
出版日期:  2017-03-25      发布日期:  2018-05-02
ZTFLH:  TU528.58  
基金资助: 国家自然科学基金(11362013);内蒙古自治区高等学校科学研究项目(NJZY330);内蒙古工业大学科学研究项目(X201423)
通讯作者:  赵燕茹:女,1971年生,博士,博士研究生导师,教授,主要从事纤维增强水泥基材料的研究,E-mail:zhaoyanru710523@126.cn   
作者简介:  武文红:女,1980年生,硕士,讲师,主要从事图形图像处理的应用研究,E-mail:wwh801225@163.com
引用本文:    
武文红, 牛恒茂, 赵燕茹, 邢永明. 基于图像处理的纤维分布与取向分布对水泥基材料弯曲性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 140-146.
WU Wenhong, NIU Hengmao, ZHAO Yanru, XING Yongming. Effects of Fiber Distribution and Orientation Distribution Based on Image
Processing on Bending Properties of PVA Fiber Reinforced Cementitious Composites. Materials Reports, 2017, 31(6): 140-146.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.06.028  或          https://www.mater-rep.com/CN/Y2017/V31/I6/140
1 Li V C. On engineered cementitious composites: A review of the material and its applications[J]. J Adv Concr Technol,2003,1(3):215.
2 Li V C, Wu C, Wang S X, et al. Interface tailoring for strain-har-dening PVA-ECC [J]. ACI Mater J,2002,99(5):463.
3 Li V C, Mishra D K, Wu H C. Matrix design for pseudo strain-hardening fiber reinforced cementitious composites [J]. Mater Struct,1995,28(10):586.
4 Niu Hengmao, Wu Wenhong, Xing Yongming, et al. Effects of water/cement ratio on properties and microstructure of PVA fiber reinforced cementitious composites[J] Acta Mater Compos Sin,2015,32(4):1067(in Chinese).
牛恒茂, 邢永明, 武文红,等. 水灰比对PVA纤维增强水泥基复合材料性能和显微结构的影响[J]. 复合材料学报,2015,32(4):1067.
5 Akkaya Y, Shah S P, Ankenman B. Effect of fiber dispersion on multiple cracking of cement composites[J]. J Mater Civil Eng,2001,127(4):311.
6 Su T K, Jin K K. The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC) [J]. Cem Concr Res,2011,41(10):1001.
7 Kang S T, Lee B Y, Kim J K, et al. The effect of fibre dispersion characteristics on the flexural strength of steel fibre-reinforced ultra high strength concrete[J]. Constr Build Mater,2011,25(5):2450.
8 Zhou J, Qian S Z, Guang Y, et al. Improved fiber distribution and mechanical properties of engineered cementitious composites by adjusting the mixing sequence[J]. Cem Concr Compos,2012,34(3):342.
9 Zerbino R, Tobes J M, Bossio M E, et al. On the orientation of fibres in structural members fabricated with self compacting fibre reinforced concrete[J]. Cem Concr Compos,2012,34(2):191.
10 Li M, Li V C. Rheology, fiber dispersion, and robust properties of engineered cementitious composites[J]. Mater Struct,2013,46(3):405.
11 Martinie L, Roussel N. Simple tools for fiber orientation prediction in industrial practice[J]. Cem Concr Res,2011,41(10):993.
12 Burak F, Kamile T, Ravir R, et al. Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC[J]. Composites Part B,2014,60(60):359.
13 Naaman A E, Reinhardt H W. Proposed classification of FRC composites based on their tensile response[J]. Mater Struct,2006,39(5):547.
14 ASTM C 1609/C 1690M-05. Standard test method for flexural performance of fiber reinforced concrete (using beam with third-point loading) [S]. America: American Society of Testing and Materials,2006:1.
15 Su T K, Jin K K. Numerical simulation of the variation of fiber orientation distribution during flow molding of ultra high perfor-mance cementitious composites (UHPFRCC) [J]. Cem Concr Compos,2012,34(2):208.
16 Torigoe S, Horikoshi T, Ogawa A. Study on evaluation method for PVA fiber distribution in engineered cementitious composite[J]. J Adv Concr Technol,2003,1(3):265.
17 Kobayashi K, Cho R. Fiber reinforced concrete. Fiber-reinforced concrete: German Patent, 3161293[P/OL]. 1983-12-8. http://www. freepatentsonline.com/DE3161293.html
18 Wang S X, Li V C. Tailoring of pre-existing flaws in ECC matrix for saturated strain hardening[C]//Proceedings of FRAMCOS-5, Vail, Colorado, USA,2004:1005.
19 Shi Huisheng, Fang Zefeng. Influence of fly ash on early hydration and pore structure of cement pastes[J].J Chin Ceram Soc,2004,32(1):95(in Chinese).
施惠生,方泽锋. 粉煤灰对水泥浆体早期水化和孔结构的影响[J].硅酸盐学报,2004,32(1):95.
[1] 吴思远, 单忠德, 陈恳, 刘丰, 刘晓军, 严春晖. 3D打印连续纤维增强树脂T型梁的弯曲性能[J]. 材料导报, 2024, 38(7): 22090150-7.
[2] 喻松, 胡翔, 赵一帆, 朱德举, 史才军. 玻璃纤维织物增强海水海砂混凝土在模拟海洋环境中的耐久性研究[J]. 材料导报, 2022, 36(9): 21020151-9.
[3] 邓明科, 王雪松, 张敏, 马福栋, 罗妍, 孙宏哲. 钢筋高延性混凝土梁裂缝试验研究与计算方法[J]. 材料导报, 2022, 36(2): 20120239-9.
[4] 徐可, 陆春华, 宣广宇, 倪铭志, 张灵灵, 周隽, 徐荣进. 温度老化对GFRP/BFRP筋残余弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4053-4060.
[5] 杜文平, 杨才千, 王冲. 加固层厚度对PVA-RFCC加固梁弯曲性能的影响[J]. 材料导报, 2021, 35(4): 4067-4073.
[6] 彭卓, 朱德举, 史才军, 郭帅成, 李宁. 玄武岩织物增强碱激发矿渣粉煤灰水泥砂浆的耐久性研究[J]. 材料导报, 2021, 35(16): 16058-16064.
[7] 帅亮, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生. 三维五向Cf/Al复合材料不同温度下的轴向弯曲变形力学行为[J]. 材料导报, 2020, 34(20): 20137-20142.
[8] 赖家美, 阮金琦, 王森, 黄志超. 缝合泡沫复合材料弯曲性能研究[J]. 材料导报, 2020, 34(18): 18165-18170.
[9] 牛恒茂, 武文红, 赵燕茹, 邢永明. 基于PVA纤维-基体界面性能分析水泥基材料的弯曲性能[J]. 材料导报, 2018, 32(6): 995-999.
[10] 祝和意, 张少峰. PVA纤维体积率对PVA-ECC力学性能的影响[J]. 材料导报, 2018, 32(18): 3266-3270.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed