Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23070014-7    https://doi.org/10.11896/cldb.23070014
  金属与金属基复合材料 |
CeO2对WC/Ni复合熔覆层微观组织与性能的影响
杨贵荣1,*, 宋文明2, 许可1, 马颖1
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 机械工业上海蓝亚石化设备检测所有限公司,兰州 730070
Effect of CeO2 on Microstructure and Properties of WC/Ni Composite Cladding Coating
YANG Guirong1,*, SONG Wenming2, XU Ke1, MA Ying1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 Machinary Industry Shanghai Lanya Petrochemical Equipment Inspection Ltd., Lanzhou 730070, China
下载:  全 文 ( PDF ) ( 49445KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作采用真空熔覆技术制备了不同CeO2含量的WC/Ni复合熔覆层,通过SEM、XRD、EDS及显微硬度计对复合熔覆层的微观组织、成分及硬度分布等进行系统分析。结果显示:与基体呈冶金结合的复合熔覆层组织致密,复合熔覆层由厚度2~3 mm且具有网状结构特征的复合层区与约300 μm的过渡层区组成,根据熔合程度过渡区又分为冶金熔合区、扩散熔合区及扩散区;随着CeO2含量的增加,复合熔覆层的晶粒逐渐细化、熔合质量提高,特别是过渡熔合区出现鱼骨状的析出相;复合区的网孔部位主要组成相为γ-(Ni,Fe)固溶体、FeNi3、Cr7C3、Cr23C6、Ni3Si和NiB,网线区主要组成相为WC、WC2、γ-(Ni,Fe)固溶体、共晶组织等;复合熔覆层的显微硬度由表面至基体逐渐降低,且随着CeO2含量的增加硬度逐渐升高,CeO2含量为1.5%时,达到最大值,其平均显微硬度比基体提高5~6倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨贵荣
宋文明
许可
马颖
关键词:  WC/Ni复合熔覆层  CeO2  微观组织细化  显微硬度    
Abstract: The vacuum cladding technology was used to prepare WC/Ni composite cladding coating modified with different CeO2 content. The microstructure, composition and microhardness of the WC/Ni composite coating were systematically analyzed by SEM, XRD, EDS and microhardness tester. The results showed that the microstructure of composite cladding coating was dense and the interface between composite coa-ting and 45# steel substrate was metallurgical bonding. The composite cladding coating included the composite layer with network structure cha-racteristics of 2—3 mm and the transition layer of about 300 μm thickness. With the increasing of CeO2 content, the grain size of the composite cladding coating was gradually refined and its fusion quality improved, especially the fishbone precipitated phase appeared in the metallurgical fusion zone of transition layer. The main phases of the mesh hole region in the composite layer were γ-(Ni, Fe) solid solution, FeNi3, Cr7C3, Cr23C6, Ni3Si and NiB, while the main phases of the mesh line region were WC, WC2, solid solution and eutectic. The microhardness of composite cladding coating gradually decreased from the composite coating surface to 45# steel substrate, and its average microhardness gradually increased with the increasing of CeO2 content. The maximum value was reached when the CeO2 content was 1.5%, and the average microhardness was 5—6 times higher than that of the substrate.
Key words:  WC/Ni composite cladding coating    CeO2    microstructure refinement    microhardness
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(51765035;51205178);先进反应堆工程与安全教育部重点实验室开放基金课题(ARES-2022-02)
通讯作者:  *杨贵荣,通信作者,兰州理工大学材料科学与工程学院教授、博士研究生导师。2000年河北科技大学铸造专业本科毕业,2003年兰州理工大学材料加工专业硕士毕业后留校任教至今,2006年兰州理工大学材料加工工程专业博士毕业。目前主要从事表面耐磨耐蚀复合材料、石化用钢材的腐蚀行为机制及石化部件的失效分析等方面的研究工作。发表相关论文100多篇,包括Surface Coating & Technology、Materials Science and Engineering A、Wear、 International Journal of Materials Research等,作为主要完成人申请发明专利7项,获得授权2项。yanggrming@lut.edu.cn   
引用本文:    
杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
YANG Guirong, SONG Wenming, XU Ke, MA Ying. Effect of CeO2 on Microstructure and Properties of WC/Ni Composite Cladding Coating. Materials Reports, 2024, 38(19): 23070014-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070014  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23070014
1 Yin X, Jin J, Chen X C, et al. ACS Applied Materials & Interfaces, 2019, 11, 32569.
2 Nayak R S, Mohana S N K. Surfaces and Interfaces, 2018, 11, 63.
3 Li M Y, Han B, Qi C H, et al. Journal of Nanomaterials, 2015, 2015, 1.
4 Hamed S, Reza S A, Amir K, et al. Protection of Metals and Physical Chemistry of Surfaces, 2022, 58, 287.
5 Mondal K, Nuez III L, Downey C M, et al. Industrial & Engineering Chemistry Research, 2021, 60, 6061.
6 He X, Song R, Kong D.Optics and Laser Technology, 2019, 112, 339.
7 Wang D W, Ran S L, Shen L, et al. Journal of the European Ceramic Society, 2015, 35, 1107.
8 Yang C L, Zhang B, Zhao D Ch, et al. Journal of Alloys and Compounds, 2017, 699, 627.
9 Zhou S F, Zeng X Y, Hu Q W, et al. Applied Surface Science, 2008, 255, 1646.
10 Quazi M M, Fazal A M, Haseeb A M S A, et al. Lasers in Manufacturing and Materials Processing, 2016, 3, 67.
11 Xu J S, Zhang X C, Xuan F Z, et al. Materials Science & Engineering A, 2013, 560, 744.
12 Wang D S, Liang E J, Chao M J, et al.Surface & Coatings Technology, 2007, 202, 1371.
13 Zhou H X, Zhu F Y, Ma G J, et al. Surface Review and Letters, 2018, 25, 1850114.
14 He X, Song R G, Kong D J. Optics and Laser Technology, 2019, 117, 18.
15 Ghosh D, Roy H, Das S, et al. Surface Engineering, 2016, 32, 397.
16 Xu Z Z, He Z J, Wang Z Y, et al. Journal of Materials Engineering and Performance, 2019, 28, 4983.
17 Han B, Lin J Y, Han X R, et al. Surface Engineering, 2021, 37, 982.
18 Gong Y L, Wu M P, Miao X J, et al. Advances in Mechanical Engineering, 2021, 13, 821.
19 Kumar S, Kumar D. Surface & Coatings Technology, 2018, 349, 462.
20 Li M Y, Han B, Wang Y, et al. Optik-International Journal for Light and Electron Optics, 2017, 130, 1032.
21 Chen Y, Chao Y J, Luo Z, et al. Surface Engineering, 2018, 34, 588.
22 Deng X C, Wang K F, Zhang G H. International Journal of Applied Ceramic Technology, 2022, 19, 1916.
23 Ye X, Cao H S, Qi F G, et al. Materials, 2020, 13, 583.
24 Dong J T, Luo Z, Zhou L S, et al. Advanced Materials Research, 2010, 160-162, 796.
25 Zhang H, Zou Y, Zou Z D, et al. Journal of Rare Earths, 2014, 32, 1095.
26 Zhou S F, Zeng X Y, Hu Q W, et al.Applied Surface Science, 2008, 255, 1646.
27 Kang J, Yu Y C, Liu L G, Journal of the Chinese Society of Rare Earths, 2021, 39(4), 608(in Chinese).
康健, 于彦冲, 刘林刚, 等. 中国稀土学报, 2021, 39(4), 608.
28 Xuan T P, Huo Y, Min D, Transactions of the Chinese Society for Agricultural Machinery, 2006(11), 156(in Chinese).
宣天鹏, 霍影, 闵丹. 农业机械学报, 2006(11), 156.
[1] 朱本清, 余红发, 巩旭, 吴成友, 麻海燕. 除冰盐冻融作用下混凝土界面粘结强度与界面过渡区细观力学性能的关系[J]. 材料导报, 2024, 38(5): 22070190-7.
[2] 莫日格吉乐, 包莫日根, 白璐, 谢兵, 于晓丽, 曹鸿璋, 赵丹蕾, 赵斯琴. CeO2光催化原理及改性研究进展[J]. 材料导报, 2024, 38(21): 23080150-6.
[3] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[4] 李聪, 余冉, 刘太楷, 邓春明, 邓畅光, 刘敏. 基于3D打印技术的甲烷水蒸气重整研究[J]. 材料导报, 2024, 38(10): 23020015-9.
[5] 黄仁君, 闫二虎, 陈运灿, 葛晓宇, 程健, 王豪, 刘威, 褚海亮, 邹勇进, 徐芬, 孙立贤. Nb-Ti-Fe合金的组织和耐腐蚀性能及置氢前后的显微硬度研究[J]. 材料导报, 2023, 37(7): 21070095-7.
[6] 张冠星, 董宏伟, 钟素娟, 薛行雁, 刘晓芳, 常云峰. BAg30CuZnSn退火过程中组织性能演变[J]. 材料导报, 2023, 37(6): 21070103-4.
[7] 张明山, 田亚强, 郑小平, 张源, 王俊升, 陈连生. 基于CALPHAD计算的铸造Al-Si-Cu-Mg合金热处理工艺优化研究[J]. 材料导报, 2023, 37(22): 22050146-6.
[8] 邱继生, 朱梦宇, 周云仙, 高徐军, 李蕾蕾. 粉煤灰对煤矸石混凝土界面过渡区的改性效应[J]. 材料导报, 2023, 37(2): 21050280-7.
[9] 徐鹏辉, 王胜民, 乐林江, 肖敏, 赵晓军. 温度和甲酸镍含量对制备Zn-Ni合金渗层的影响[J]. 材料导报, 2023, 37(16): 21120065-8.
[10] 高嵩, 班顺莉, 郭嘉, 邹传学, 宫尧尧. 硅灰对再生混凝土界面过渡区的影响[J]. 材料导报, 2023, 37(11): 21090034-7.
[11] 肖述广, 谢志雄, 陈卓, 陈琪, 董仕节, 解剑英. 薄壁3003铝合金管高频感应焊焊接接头微观组织及力学性能研究[J]. 材料导报, 2023, 37(1): 21080147-6.
[12] 孙玉玲, 马宏昊, 沈兆武, 杨明, 田启超. 槽型结构316L/CuCrZr真空熔铸复合技术的研究[J]. 材料导报, 2022, 36(23): 21050179-5.
[13] 龚玉玲, 武美萍, 缪小进, 崔宸. 扫描速度对激光熔覆CeO2/Ni60A涂层耐腐蚀性能的影响[J]. 材料导报, 2022, 36(18): 21050169-5.
[14] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[15] 王永田, 魏啸天, 赵祎璠, 王嘉伟. 高硼含量的铁基非晶复合涂层的制备与性能研究[J]. 材料导报, 2021, 35(Z1): 425-428.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed