Effect of CeO2 on Microstructure and Properties of WC/Ni Composite Cladding Coating
YANG Guirong1,*, SONG Wenming2, XU Ke1, MA Ying1
1 State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China 2 Machinary Industry Shanghai Lanya Petrochemical Equipment Inspection Ltd., Lanzhou 730070, China
Abstract: The vacuum cladding technology was used to prepare WC/Ni composite cladding coating modified with different CeO2 content. The microstructure, composition and microhardness of the WC/Ni composite coating were systematically analyzed by SEM, XRD, EDS and microhardness tester. The results showed that the microstructure of composite cladding coating was dense and the interface between composite coa-ting and 45# steel substrate was metallurgical bonding. The composite cladding coating included the composite layer with network structure cha-racteristics of 2—3 mm and the transition layer of about 300 μm thickness. With the increasing of CeO2 content, the grain size of the composite cladding coating was gradually refined and its fusion quality improved, especially the fishbone precipitated phase appeared in the metallurgical fusion zone of transition layer. The main phases of the mesh hole region in the composite layer were γ-(Ni, Fe) solid solution, FeNi3, Cr7C3, Cr23C6, Ni3Si and NiB, while the main phases of the mesh line region were WC, WC2, solid solution and eutectic. The microhardness of composite cladding coating gradually decreased from the composite coating surface to 45# steel substrate, and its average microhardness gradually increased with the increasing of CeO2 content. The maximum value was reached when the CeO2 content was 1.5%, and the average microhardness was 5—6 times higher than that of the substrate.
通讯作者: *杨贵荣,通信作者,兰州理工大学材料科学与工程学院教授、博士研究生导师。2000年河北科技大学铸造专业本科毕业,2003年兰州理工大学材料加工专业硕士毕业后留校任教至今,2006年兰州理工大学材料加工工程专业博士毕业。目前主要从事表面耐磨耐蚀复合材料、石化用钢材的腐蚀行为机制及石化部件的失效分析等方面的研究工作。发表相关论文100多篇,包括Surface Coating & Technology、Materials Science and Engineering A、Wear、 International Journal of Materials Research等,作为主要完成人申请发明专利7项,获得授权2项。yanggrming@lut.edu.cn
引用本文:
杨贵荣, 宋文明, 许可, 马颖. CeO2对WC/Ni复合熔覆层微观组织与性能的影响[J]. 材料导报, 2024, 38(19): 23070014-7.
YANG Guirong, SONG Wenming, XU Ke, MA Ying. Effect of CeO2 on Microstructure and Properties of WC/Ni Composite Cladding Coating. Materials Reports, 2024, 38(19): 23070014-7.
1 Yin X, Jin J, Chen X C, et al. ACS Applied Materials & Interfaces, 2019, 11, 32569. 2 Nayak R S, Mohana S N K. Surfaces and Interfaces, 2018, 11, 63. 3 Li M Y, Han B, Qi C H, et al. Journal of Nanomaterials, 2015, 2015, 1. 4 Hamed S, Reza S A, Amir K, et al. Protection of Metals and Physical Chemistry of Surfaces, 2022, 58, 287. 5 Mondal K, Nuez III L, Downey C M, et al. Industrial & Engineering Chemistry Research, 2021, 60, 6061. 6 He X, Song R, Kong D.Optics and Laser Technology, 2019, 112, 339. 7 Wang D W, Ran S L, Shen L, et al. Journal of the European Ceramic Society, 2015, 35, 1107. 8 Yang C L, Zhang B, Zhao D Ch, et al. Journal of Alloys and Compounds, 2017, 699, 627. 9 Zhou S F, Zeng X Y, Hu Q W, et al. Applied Surface Science, 2008, 255, 1646. 10 Quazi M M, Fazal A M, Haseeb A M S A, et al. Lasers in Manufacturing and Materials Processing, 2016, 3, 67. 11 Xu J S, Zhang X C, Xuan F Z, et al. Materials Science & Engineering A, 2013, 560, 744. 12 Wang D S, Liang E J, Chao M J, et al.Surface & Coatings Technology, 2007, 202, 1371. 13 Zhou H X, Zhu F Y, Ma G J, et al. Surface Review and Letters, 2018, 25, 1850114. 14 He X, Song R G, Kong D J. Optics and Laser Technology, 2019, 117, 18. 15 Ghosh D, Roy H, Das S, et al. Surface Engineering, 2016, 32, 397. 16 Xu Z Z, He Z J, Wang Z Y, et al. Journal of Materials Engineering and Performance, 2019, 28, 4983. 17 Han B, Lin J Y, Han X R, et al. Surface Engineering, 2021, 37, 982. 18 Gong Y L, Wu M P, Miao X J, et al. Advances in Mechanical Engineering, 2021, 13, 821. 19 Kumar S, Kumar D. Surface & Coatings Technology, 2018, 349, 462. 20 Li M Y, Han B, Wang Y, et al. Optik-International Journal for Light and Electron Optics, 2017, 130, 1032. 21 Chen Y, Chao Y J, Luo Z, et al. Surface Engineering, 2018, 34, 588. 22 Deng X C, Wang K F, Zhang G H. International Journal of Applied Ceramic Technology, 2022, 19, 1916. 23 Ye X, Cao H S, Qi F G, et al. Materials, 2020, 13, 583. 24 Dong J T, Luo Z, Zhou L S, et al. Advanced Materials Research, 2010, 160-162, 796. 25 Zhang H, Zou Y, Zou Z D, et al. Journal of Rare Earths, 2014, 32, 1095. 26 Zhou S F, Zeng X Y, Hu Q W, et al.Applied Surface Science, 2008, 255, 1646. 27 Kang J, Yu Y C, Liu L G, Journal of the Chinese Society of Rare Earths, 2021, 39(4), 608(in Chinese). 康健, 于彦冲, 刘林刚, 等. 中国稀土学报, 2021, 39(4), 608. 28 Xuan T P, Huo Y, Min D, Transactions of the Chinese Society for Agricultural Machinery, 2006(11), 156(in Chinese). 宣天鹏, 霍影, 闵丹. 农业机械学报, 2006(11), 156.