Please wait a minute...
材料导报  2024, Vol. 38 Issue (19): 23070036-9    https://doi.org/10.11896/cldb.23070036
  无机非金属及其复合材料 |
缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展
仲小凡1, 王爱国1,*, 于乐乐1, 刘开伟1, 张祖华2, 徐志杰1, 孙道胜1
1 安徽建筑大学安徽省先进建筑材料重点实验室,合肥 230022
2 同济大学材料科学与工程学院,上海 201804
Research Progress on the Influence of Retarders on the Setting Time and Rheological Properties of Alkali-Activated Cementitious Materials
ZHONG Xiaofan1, WANG Aiguo1,*, YU Lele1, LIU Kaiwei1, ZHANG Zuhua2, XU Zhijie1, SUN Daosheng1
1 Anhui Key Laboratory of Advanced Building Materials, Anhui Jianzhu University, Hefei 230022, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
下载:  全 文 ( PDF ) ( 18812KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碱激发胶凝材料具有制备能耗低、高强和耐久性好等特点,因其利废、节能、减碳而受到全球科技界和工业界的高度重视。但碱激发胶凝材料所用原材料来源广泛,品质波动较大,导致碱激发胶凝材料的性能变化差异较为明显,稳定性控制难度较高。其中对凝结时间的调控是当下亟待解决的问题,掺入缓凝剂是调控碱激发胶凝材料凝结时间的有效途径之一。本文总结了缓凝剂对碱激发胶凝材料凝结硬化及流变性能的影响,阐明了不同类型缓凝剂对碱激发胶凝材料的调凝机理(包覆、增黏和中和),并分析了其推广应用的可行性,以期为突破碱激发胶凝材料大规模工程应用的技术瓶颈提供理论基础和技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仲小凡
王爱国
于乐乐
刘开伟
张祖华
徐志杰
孙道胜
关键词:  碱激发胶凝材料  缓凝剂  凝结时间  流变性能  调凝机理    
Abstract: Alkali-activated cementitious materials are characterised by low energy consumption, high strength and good durability, and are highly valued by the global scientific and industrial community for its utilization of waste production, energy saving and carbon reduction. However, due to the wide range of raw materials used in alkali-activated cementitious materials, the quality fluctuates, resulting in more obvious variations in the performance of alkali-activated cementitious materials and the difficulty of controlling their stability, of which the regulation of the setting time is a pressing problem. The incorporation of retarders is one of the effective ways to regulate the setting time of alkali-activated cementitious materials. This paper summarises the influence of retarders on the setting and hardening and rheological properties of alkali-activated cementitious materials, clarifies the mechanism of different types of retarders on the setting of alkali-activated cementitious materials (coating, viscosity enhancement and neutralisation) and analyses the feasibility of their application, with a view to providing a theoretical basis and technical support for breaking through the technical bottleneck of large-scale engineering applications of alkali-activated cementitious materials.
Key words:  alkali-activated cementitious materials    retarders    setting time    rheological property    mechanism of adjusting setting time
出版日期:  2024-10-10      发布日期:  2024-10-23
ZTFLH:  TU528  
基金资助: 国家自然科学基金(52278236;52172013); 安徽省高校科研创新优秀团队(2022AH010017)
通讯作者:  *王爱国,通信作者,安徽建筑大学教授、博士研究生导师。2010年毕业于南京工业大学,获材料学博士学位。2017年于澳大利亚University of Southern Queensland作访问学者。主要研究方向为高性能水泥基材料/建筑功能材料/固体废弃物综合利用。主持国家自然科学基金项目、安徽省重点研究与开发计划等省部级以上项目10余项。发表SCI、EI收录论文100余篇,获国家授权发明专利6项。任中国建筑学会建筑材料分会理事。wag3134@126.com   
作者简介:  仲小凡,2024年6月毕业于安徽建筑大学,获得硕士学位。研究方向为高性能水泥基材料、海工混凝土。
引用本文:    
仲小凡, 王爱国, 于乐乐, 刘开伟, 张祖华, 徐志杰, 孙道胜. 缓凝剂对碱激发胶凝材料凝结时间及流变性能影响的研究进展[J]. 材料导报, 2024, 38(19): 23070036-9.
ZHONG Xiaofan, WANG Aiguo, YU Lele, LIU Kaiwei, ZHANG Zuhua, XU Zhijie, SUN Daosheng. Research Progress on the Influence of Retarders on the Setting Time and Rheological Properties of Alkali-Activated Cementitious Materials. Materials Reports, 2024, 38(19): 23070036-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23070036  或          http://www.mater-rep.com/CN/Y2024/V38/I19/23070036
1 Farhan K Z,Johari M,Demirboga R.Construction and Building Materials,2020,264,120276.
2 Singh N B,Middendorf B.Construction and Building Materials,2020,237(10),117455.
3 Peng J X,Huang L,Zhao Y B,et al.Advance Materials Research,2013,610-613,2120.
4 Habert G,Lacaillerie J,Roussel N.Journal of Cleaner Production,2011,19,1229.
5 Mclellan B C,Williams R P,Lay J,et al.Journal of Cleaner Production,2011,19,1080.
6 Wang A G,Wang X Y,Sun D S,et al.Materials Reports,2021,35(13),5 (in Chinese).
王爱国,王星尧,孙道胜,等.材料导报,2021,35(13),5.
7 Noushini A,Aslani F,Castel A,et al.Cement and Concrete Composites,2016,73,136.
8 Zhang P,Zheng Y X,Wang K J,et al.Composites Part B: Engineering,2018,152,79.
9 Wang A G,Zheng Y,Zhang Z H,et al.Engineering,2020,6(6),695.
10 Zhang D W,Wang D M.Materials Reports,2018,32(5),1519 (in Chinese).
张大旺,王栋民.材料导报,2018,32(5),1519.
11 Kaja A M,Lazaro A,Yu Q L.Construction and Building Materials,2018,189,1113.
12 Zunino F,Bentz D P,Castro J.Cement and Concrete Composites,2018,90,14.
13 Jiang D D,Shi C J,Zhang Z H,et al.Cement and Concrete Composites,2022,134,104795.
14 Wang A G,Zheng Y,Zhang Z H,et al.Materials Reports,2019,33(8),2552 (in Chinese).
王爱国,郑毅,张祖华,等.材料导报,2019,33(8),2552.
15 Zhu Y C,Zhang Z H,Liu Y,et al.Bulletin of the Chinese Ceramic Society,2020,39(8),2458 (in Chinese).
朱颖灿,张祖华,刘意,等.硅酸盐通报,2020,39(8),2458.
16 Si R Z,Guo S C,Dai Q L.Journal of the American Ceramic Society,2019,102(3),1479.
17 Gebregziabiher B S,Thomas R,Peethamparan S.Cement and Concrete Composites,2014,55,91.
18 Sun B,Ye G,Schutter G D.Construction and Building Materials,2022,326,126843.
19 Li N,Shi C,Zhang Z.Composites Part B: Engineering,2019,171,34.
20 Tl A,Hs A,Za A,et al.Construction and Building Materials,2020,233,117354.
21 Kumarappa D B,Peethamparan S,Ngami M.Cement and Concrete Research,2018,109,1.
22 Duxson P, Fernández-Jiménez A,Provis J L,et al.Journal of Materials Science and Technology,2007,42,2917.
23 Fernández-Jiménez A,Palomo A,Criado M.Cement and Concrete Research,2005,35(6),1204.
24 Shi C, Fernández-Jiménez A,Palomo A.Cement and Concrete Research,2011,41(7),750.
25 Rees C A,Provis J L,Lukey G C,et al.Colloids and Surfaces A,Physicochemical and Engineering Aspects,2008,318(1-3),97.
26 Chang J J.Cement and Concrete Research,2003,33(7),1005.
27 Tailby J,Mackenzie K.Cement and Concrete Research,2010,40(5),787.
28 Liu X,Li S Y,Ding Y C,et al.Journal of Building Engineering,2023,64,105694.
29 Zhang P,Gao Z,Wang J,et al.Journal of Cleaner Production,2020,270,122389.
30 Alonso M M,Gismera S, Blanco M T,et al.Construction and Building Materials,2017,145,576.
31 Brough A R,Holloway M,Sykes J,et al.Cement and Concrete Research,2000,30(9),1375.
32 Li Z X,Tang J W.Advanced Materials Research,2012,534,34.
33 Sugiarto A,Satria J,Wijaya S W.Materials Science Forum,2016,857,416.
34 Oderji S Y,Chen B,Shakya C,etal.Construction and Building Materials,2019,229,116891.
35 Fan S D,Li Y X,Wang S J,et al.Concrete, 2014(10),81 (in Chinese).
樊晓丹,李玉祥,王少剑,等.混凝土,2014(10),81.
36 Xie J H,Li L M,Huang J J,et al.Journal of Architecture and Civil Engineering,DOI: http:∥kns.cnki.net/kcms/detail/61.1442.TU.20220309.1352.002.html (in Chinese).
谢建和,李丽明,黄俊健,等.建筑科学与工程学报,DOI: http:∥kns.cnki.net/kcms/detail/61.1442.TU.20220309.1352.002.html.
37 LEE N K,LEE H K.Construction and Building Materials,2013,47,1201.
38 Kalina L,Vlastimil B,Radoslav N,et al.Materials,2016,9(5),395.
39 Kusbiantoro A,Ibrahim M S,Muthusamy K,et al.Procedia Environmental Sciences,2013,17,596.
40 Assi L N,Deaver E,Ziehl P.Construction and Building Materials,2018,191(10),47.
41 Najimi M,Ghafoori N,Sharbaf M.Magazine of Concrete Research,2020,72(18),919.
42 Chen W,Jin L,Fan J F,et al.Bulletin of The Chinese Ceramic Society, 2016,35(6),1682 (in Chinese).
陈伟,金浪,范剑锋,等.硅酸盐通报,2016,35(6),1682.
43 Yu Q J,Zhao S Y,Huang J Q,et al.Journal of the Chinese Ceramic Society,2005,33(7),871 (in Chinese).
余其俊,赵三银,黄家琪,等.硅酸盐学报,2005,33(7),871.
44 Nedunuri A,Muhammad S.Construction and Building Materials,2022,344,128128.
45 Dupuy C,Havette J,Gharzouni A,et al.Construction and Building Materials,2019,200(10),272.
46 Zhang W L,Yang C H,Yang K,et al.Journal of Building Materials,2016,19(5),803 (in Chinese).
张武龙,杨长辉,杨凯,等.建筑材料学报,2016,19(5),803.
47 Sinha A K,Talukdar S.Construction and Building Materials,2021,313,125380.
48 Rakhimova N R,Rakhimov R Z,Morozov V P,et al.Journal of Cleaner Production,2017,149,60.
49 Zhang L,Ji Y,Li J,et al.Construction and Building Materials,2019,212(10),192.
50 Sasaki K,Kurumisawa K,Ibayashi K.Construction and Building Materials,2019,216(20),337.
51 Sun J W D.Journal of Thermal Analysis and Calorimetry,2021,144(1),41.
52 Karthik A,Sudalaimani K,Kumar C.Construction and Building Materials,2017,149,338.
53 Ismail E H.Journal of Sustainable Cement-Based Materials,2017,7,1.
54 JangJ G,Lee N K.Construction and Building Materials,2014,50,169.
55 Lu C F,Zhang Z H,Shi C J,et al.Cement and Concrete Composites,2021,121(1),104061.
56 Yuan Q,Huang Y L,Huang T J,et al.Journal of Central South University,2022,29(1),282.
57 Dai X,Aydin S,Yardimci M Y,et al.Cement and Concrete Research,2022,159,106872.
58 Thirunavukarasu R. Construction and Building Materials,2020,267,120965.
59 Luukkonen T,Abdollahnejad Z,Ohenoja K,et al.Journal of Sustainable Cement-Based Materials,2019,(8),244.
60 Ren J,Zhou Q Z,Yang C H,et al.Cement and Concrete Composites,2023,136,104900.
61 Wang X Y,Wang A G,Zhang Z H,et al.Composites Part B: Engineering,2023,252,110519.
62 Cong X,Zhou W,Geng X,et al.Cement and Concrete Composites,2019,104,103399.
63 Habbaba A,Plank J.Journal of the American Ceramic Society,2012,95(2),768.
64 Lei H K.Cement and Concrete Research,2020,136(1),106150.
65 Thushara Raju,K.P.Ramaswamy,B.Saraswathy.Materials Today,Proceedings,2022,62,846.
66 Weckwerth S A,Temme R L,Flatt R J.Cement and Concrete Research,2022,151,106523.
67 Zhang J Y,Ye H,Gao X J,et al.Journal of Materials Research and Technology,2022,17,1740.
68 Chen X,Mondal P.Journal of the American Ceramic Society,2021,104,2894.
69 Park S,Pour-Ghaz M.Construction and Building Materials,2018,182(10),360.
70 Zhang Z Q,Zhou D L,Li F G,et al.Concrete, 2008(8),63 (in Chinese).
张志强,周栋梁,李付刚,等.混凝土,2008(8),63.
[1] 元强, 钟福文, 姚灏, 左胜浩, 谢宗霖, 姜孟杰. 搅拌工艺对高掺量丁苯乳液改性硫铝酸盐水泥性能的影响[J]. 材料导报, 2024, 38(9): 22110286-7.
[2] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[3] 张翠榕, 张鸿儒, 江隽杰, 易世帆. 碱激发生活垃圾焚烧炉渣底灰泡沫混凝土制备及性能研究[J]. 材料导报, 2024, 38(22): 23100256-7.
[4] 何印章, 熊坤, 张久鹏, 李哲, 李岩. 基于SARA组分调和沥青流变性能、粘附性自愈合性能研究[J]. 材料导报, 2024, 38(22): 24050184-8.
[5] 朱文超, 张雷, 张亚洲, 李明清, 张建峰, 闵凡路. 碱性速凝剂对盾构壁后注浆浆体性能影响及微观机理研究[J]. 材料导报, 2024, 38(19): 23040077-7.
[6] 杨一哲, 林旭健, 许晓莹, 林恒舟, 陈韦羽, 叶财发. 葡萄糖酸钠对硅磷酸钾镁水泥基本性能的影响[J]. 材料导报, 2024, 38(17): 23080008-6.
[7] 刘晓, 谢辉, 罗奇峰, 王子明, 崔素萍, 郭金波, 张冠华. 三乙醇胺对液体无碱速凝剂“促-抑”水泥早期水化的调控机理研究[J]. 材料导报, 2023, 37(9): 21100165-6.
[8] 张吉哲, 郭晨晨, 胡学亮, 何亮, 吕鑫, 樊超, 姚占勇. 富油沥青砂浆再生设计与性能恢复规律研究[J]. 材料导报, 2023, 37(24): 22100098-7.
[9] 黄帅, 张文芹, 刘志超, 王发洲. 基于CO2驱动固结的镁渣基3D打印材料的制备与性能研究[J]. 材料导报, 2023, 37(19): 22050050-7.
[10] 王嘉昊, 沈玉, 刘娟红, 罗昆. 不同种类缓凝剂对半水磷石膏凝结时间和硬化性能的影响[J]. 材料导报, 2022, 36(Z1): 21120173-5.
[11] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[12] 彭博, 凌天清, 葛豪. 纳米粒子改性橡胶沥青抗老化性能研究[J]. 材料导报, 2022, 36(20): 22090054-8.
[13] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[14] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[15] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed