Please wait a minute...
材料导报  2022, Vol. 36 Issue (16): 22040405-6    https://doi.org/10.11896/cldb.22040405
  低碳生态路面材料 |
老化对废机油再生沥青流变特性的影响及机理
刘芳1, 王旗1, 张翛1,*, 彭义军2, 刘晓东3
1 太原理工大学土木工程学院,太原 030024
2 山西高速集团朔神有限责任公司,山西 朔州 038500
3 山西省公路局朔州分局,山西 朔州 036899
Influence and Mechanism of Aging on the Rheological Properties of Recycled Asphalt Binders with Waste Engine Oil
LIU Fang1, WANG Qi1, ZHANG Xiao1,*, PENG Yijun2, LIU Xiaodong3
1 School of Civil Engineering, Taiyuan University of Technology, Taiyuan 030024, China
2 Shuoshen of Shanxi Expressway Group Co., Ltd., Shuozhou 038500, Shanxi, China
3 Shuozhou Branch of Shanxi Provincial Highway Bureau, Shuozhou 036899, Shanxi, China
下载:  全 文 ( PDF ) ( 3859KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青再生技术以降低环境污染、节约资源和提高成本效益等优点在路面工程中被广泛应用。诸多研究集中于再生沥青是否能恢复其初始性能,而对再生沥青二次老化过程中的性能变化关注较少。因而本工作分别对原沥青、老化沥青和废机油再生沥青进行不同时间段的老化模拟,借助动态频率扫描和傅里叶红外光谱试验,对比分析三种沥青在不同老化时间下的流变性能、低温抗裂性能、化学官能团的变化规律,探索其性能变化与官能团变化间的内在联系。发现再生沥青在老化过程中的流变性能、抗裂性衰减过程与原沥青类似,均在老化初期衰减较快,老化后期衰减较慢,且再生沥青的流变性能和抗裂性衰减幅度均大于原沥青;再生沥青与原沥青的抗裂性在老化初期相差较小,随着老化时间的延长两者的抗裂性差距逐渐增大,且再生沥青的抗裂性逐渐接近于老化沥青;老化沥青的流变性能和抗裂性在老化过程中衰减较缓慢;再生沥青与原沥青的羰基指数均随老化时间的延长先快速增长后缓慢增长,但两者之间的羰基指数差值逐渐增大,而老化沥青的羰基指数随老化时间的延长呈近似线性增长;三种沥青在不同老化时间下的G-R常数与羰基指数有较好的相关性,但沥青种类不同,两者之间的关系式不同,且沥青经历的老化条件不一样,其关系式也不相同。结果表明,在老化过程中再生沥青中的再生剂挥发和氧化完后,其老化程度逐渐接近于老化沥青,其流变性能和抗裂性能优势不再体现。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘芳
王旗
张翛
彭义军
刘晓东
关键词:  再生沥青  老化  流变性能  抗裂性能  羰基指数    
Abstract: Asphalt recycling technology is widely applied in pavement engineering because of its advantages of reducing environmental pollution, saving resources and improving cost-effectiveness. Many studies focus on whether recycled asphalt can restore its initial performance, but pays less attention to the change of performance of recycled asphalt in the re-aging process. In this work, the thermal oxygen aging tests were carried out for the original asphalt, aged asphalt and waste engine oil recycled asphalt at different aging durations respectively. Then the rheological pro-perties, low-temperature crack resistance and chemical functional groups of the three kinds of asphalt at different aging times were compared and analyzed based on the frequency sweep test and Fourier infrared spectroscopy test, and the relationship between the variation of the perfor-mances and that of chemical functionas was investigated. It was found that the rheological property of recycled asphalt was similar to the original asphalt in the reaging process. The rheological property and cracking resistance of these two kinds of asphalt decreased faster in the earlier aging stage and slower in the later stage, and the decrease range of recycled asphalt was greater than the original asphalt. At the initial stage of aging, the difference of cracking resistance between recycled asphalt and original asphalt was small. With the increase of the aging time, the difference between the two kinds of asphalt increased, and the cracking resistance of recycled asphalt was close to the aged asphalt gradually. The rheolo-gical property and cracking resistance of aged asphalt decreased slowly all the aging time; the carbonyl index of the recycled asphalt and original asphalt increased rapidly at first and then slowly with the increase of aging time, but the differences of carbonyl index between the two kinds of asphalt increased with the increase of aging time. And the carbonyl index of the aged asphalt increased approximately linearly with the increase of aging time. There were good correlations between G-R constant and carbonyl index of these three kinds of asphalt at different aging time, but the correlations were asphalt types dependent. The correlations were also different at different aging conditions. The results show that after the volatilization and oxidation of the regenerant of recycled asphalt during the re-aging process, the aging degree of recycled asphalt was gra-dually close to the aged asphalt, and the advantages of rheological properties and cracking resistance of recycled asphalt were no longer reflected.
Key words:  recycled asphalt    aging    rheological property    cracking resistance    carbonyl index
出版日期:  2022-08-25      发布日期:  2022-08-29
ZTFLH:  U414  
基金资助: 山西省回国留学人员科研资助项目(2022-066;HGKY2019031);山西省高等学校中青年拔尖创新人才支持计划;山西省交通运输厅科技项目(2020-1-6;2022-02-01)
通讯作者:  *zhangxiao01@tyut.edu.cn   
作者简介:  刘芳,太原理工大学土木工程学院副教授、硕士研究生导师。博士毕业于南京航空航天大学,目前主要从事沥青材料老化、废旧沥青再生等方面的研究,主持山西省基础研究计划、山西省回国留学人员科研资助项目等课题4项,在国内外期刊累积发表论文20 余篇,获国家专利7 项。张翛,太原理工大学土木工程学院教授、正高级工程师、博士研究生导师,国家注册土木工程师(道路),山西省新兴产业领军人才、山西省学术技术带头人、“三晋英才”拔尖骨干人才、山西省高校优秀青年学术带头人、中国公路学会青年专家委员会委员。2002年长安大学公路与城市道路工程专业本科毕业,2006年同济大学道路与铁道工程专业硕士毕业,2015年同济大学道路与铁道工程专业博士毕业,担任道路与桥梁工程系主任,道路与桥梁工程研究所所长。目前主要从事先进交通材料、绿色道路养护技术等方面的研究工作。研究成果获省科技进步一等奖2项、二等奖4项,省技术发明二等奖2项,发表论文70余篇。
引用本文:    
刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
LIU Fang, WANG Qi, ZHANG Xiao, PENG Yijun, LIU Xiaodong. Influence and Mechanism of Aging on the Rheological Properties of Recycled Asphalt Binders with Waste Engine Oil. Materials Reports, 2022, 36(16): 22040405-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040405  或          http://www.mater-rep.com/CN/Y2022/V36/I16/22040405
1 Tian X G, Lu X R, Dou W L, et al. Journal of Changsha University of Science & Technology (Natural Science),2022,19(1),20(in Chinese).
田小革, 卢雪蓉, 窦文利, 等. 长沙理工大学学报(自然科学版), 2022, 19(1), 20.
2 Cui Y N, Cui S Y, Guo L D. Journal of Building Materials, 2022, 25(2),164(in Chinese).
崔亚楠, 崔树宇, 郭立典. 建筑材料学报, 2022, 25(2),164.
3 Suo Z, Chen H, Zhang A, et al. Materials Reports, 2021, 35(Z1),662(in Chinese).
索智, 陈欢, 张奥,等. 材料导报, 2021, 35(Z1),662.
4 Zaumanis M, Mallick R, Poulikakos L, et al. Construction and Building Materials, 2014, 71, 538.
5 Asli H, Esmaeil A, Zargar M, et al. Construction and Building Mate-rials, 2012, 37,398.
6 Zargar M, Ahmadinia E, Asli H, et al. Journal of Hazardous Materials, 2012, 30, 233.
7 Gu X Y, Jiang Y X, Zhou Z, et al. Journal of Building Materials, 2018, 21(3), 523(in Chinese).
顾兴宇, 姜严旭, 周洲,等. 建筑材料学报, 2018, 21(3), 523.
8 Giorgia M, Edoardo B, Francesco C. Journal of Traffic and Transportation Engineering (English Edition), 2018, 5(3),157.
9 Bocci E, Mazzoni G, Canestrari F. Road Materials and Pavement Design, 2019, 20, S127.
10 Ongel A, Hugener M. Construction and Building Materials,2015,94,467.
11 Li J, Yu M Z, Cui X Z, et al. Journal of Building Materials, 2021, 24(1),225(in Chinese).
李晋, 于淼章, 崔新壮,等. 建筑材料学报, 2021, 24(1),225.
12 Luo H Y, Huang X M. China Journal of Highway and Transport, 2021, 34(10),98(in Chinese).
罗浩原, 黄晓明. 中国公路学报, 2021, 34(10),98.
13 Chen H X, Cui Y, Yin Y P, et al. China Science Paper, 2022, 17(6),1(in Chinese).
陈华鑫,崔宇,尹艳平,等. 中国科技论文, 2022, 17(6),1.
14 Domke C H, Davison R R, Glover C J. Industrial and Engineering Chemistry Research, 2000, 39, 592.
15 Jin X, Han R, Cui Y, et al. Industrial and Engineering Chemistry Research, 2011, 50, 13373.
16 Rowe G, Sharrock M. Journal of the Transportation Research Board, 2011, 2207, 125.
17 Cao Q X, Wei D B, Zhao J Z, et al. Bulletin of the Chinese Ceramic Society, 2019(3),905(in Chinese).
曹青霞, 魏定邦, 赵静卓,等. 硅酸盐通报, 2019(3),905.
18 Anderson R M, King G N, Hanson D I, et al. Journal of the Association of Asphalt Paving Technologists, 2011, 80(4), 615.
19 Li P, Nian T F, Wei D B, et al. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2018, 46(2), 34(in Chinese).
李萍, 念腾飞, 魏定邦,等. 华中科技大学学报:自然科学版, 2018, 46(2), 34.
20 Liu G, Glover C J. Chemical Engineering Journal, 2015, 280,115.
21 Cheng L, Zhang L, Lei Y C, et al. Construction and Building Materials, 2022, 314,125569.
22 Liang Y, Harvey J T, Jones D, et al. Construction and Building Mate-rials, 2021, 304, 124687.
[1] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[2] 张显, 蔡明, 孙宝忠. 植物纤维增强复合材料的湿热老化研究进展[J]. 材料导报, 2022, 36(5): 20100169-11.
[3] 王志航, 许金余, 刘高杰, 朱从进. 紫外老化对聚合物基复合材料剪切性能及孔隙结构的影响[J]. 材料导报, 2022, 36(2): 20100143-6.
[4] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[5] 金娇, 刘墨晗, 刘帅, 陈柏臻, 刘欣宇. 基于生态路面减排理念下的CeO2柱撑蒙脱土改性沥青及其催化性能研究[J]. 材料导报, 2022, 36(16): 22040157-7.
[6] 虞将苗, 马远跃, 张园, 于华洋, 邹桂莲. 高粘SBS改性乳化沥青就地冷再生混合料抗裂性能评价[J]. 材料导报, 2022, 36(16): 22040412-7.
[7] 姚玉权, 仰建岗, 高杰, 何亮, 许竞. 就地热再生沥青混合料的材料组成波动及控制策略[J]. 材料导报, 2022, 36(16): 22030098-10.
[8] 姚 震, 张凌波, 梁鹏飞, 王仕峰, 颜川奇. 多种湿法橡胶改性沥青的综合性能评价与改性机理研究[J]. 材料导报, 2022, 36(16): 21120124-7.
[9] 赵晓雯, 张检梅, 陈徐东, 季韬. 生石灰-碳酸钠掺量和矿渣活性对碱矿渣砂浆抗裂性能的影响[J]. 材料导报, 2022, 36(16): 21030241-5.
[10] 陈彪, 谭静, 付小航, 卢郁静, 朱玥玮, 黄晶, 狄雨萌, 丁延伟. 竹纸老化的热解特性及其老化程度的量化评价[J]. 材料导报, 2022, 36(13): 21040180-5.
[11] 杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
[12] 范世平, 朱洪洲, 钟伟明. 生物重油对老化50#沥青的再生效果评价[J]. 材料导报, 2022, 36(11): 21010089-5.
[13] 陈飞, 张林艳, 封基良, 马永, 赵雁斌. 沥青混合料低温抗裂性能试验方法研究进展[J]. 材料导报, 2021, 35(z2): 127-137.
[14] 郝培文, 李万军, 韩钰祥, 苏纪壮, 乐宸. 基于OT试验的乳化沥青冷再生面层混合料抗反射裂缝性能研究[J]. 材料导报, 2021, 35(z2): 150-157.
[15] 宋云连, 高盼, 吕鹏. 温拌沥青低温性能及其微观特性机理研究[J]. 材料导报, 2021, 35(Z1): 251-257.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed