Please wait a minute...
材料导报  2022, Vol. 36 Issue (9): 21020100-6    https://doi.org/10.11896/cldb.21020100
  无机非金属及其复合材料 |
热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析
程培峰1,*, 杨宗昊1, 张展铭1, 徐进2
1 东北林业大学土木工程学院,哈尔滨 150040
2 黑龙江龙格工程设计有限公司,哈尔滨 150000
Analysis of Healing Properties and Microscopic Mechanism of Nano Montmorillonite/SBS Composite Modified Asphalt Under Heat Aging
CHENG Peifeng1,*, YANG Zonghao1, ZHANG Zhanming1, XU Jin2
1 College of Civil Engineering, Northeast Forestry University, Harbin 150040, China
2 Heilongjiang Longer Engineering Design Co., Ltd., Harbin 150000, China
下载:  全 文 ( PDF ) ( 4523KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为研究热氧老化对纳米蒙脱土(MMT)改性沥青多次损伤愈合性能的影响,基于动态剪切流变仪、扫描电镜、傅里叶变换红外光谱以及凝胶色谱试验,研究了沥青微观形貌、化学结构以及分子量分布对其愈合性能的影响,并探讨了纳米改性沥青在不同老化时间的多次损伤愈合规律。结果表明:随着老化时间的延长,苯乙烯-丁二烯-苯乙烯(SBS)改性沥青的愈合性能呈下降趋势,且随着损伤次数的增加,老化时间对SBS改性沥青愈合性能的影响逐渐加剧。而MMT可以增强沥青的抗老化能力,在短期老化阶段沥青的轻质组分变化受到抑制,沥青中的分子链数量、支链长度及小分子含量受老化时间的影响较小,从而减小了老化时间对沥青愈合性能的影响。但随着老化时间的继续延长,沥青中以片层状分布的MMT同沥青相分离,导致其抗老化性能减弱,因此长期老化对MMT改性沥青多次愈合性能的影响显著。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程培峰
杨宗昊
张展铭
徐进
关键词:  道路工程  热氧老化  纳米蒙脱土(MMT)  多次损伤愈合  微观机理    
Abstract: In order to study the effects of thermal oxidative aging on the multiple damage healing properties of nano montmorillonite (MMT) asphalt, based on dynamic shear rheometer, scanning electron microscope, fourier transform infrared spectroscopy and gel permeation chromatography, the effects of multiple damage healing methods on the nano modified asphalt at different aging time were discussed, while the effects of asphalt micro morphology, chemical structure and molecular weight distribution on the healing properties were also studied. Results showed that the healing index of styrene-butadiene-styrene (SBS) modified asphalt decreases with the extension of aging time, while the influence of aging time on the healing performance of SBS modified asphalt increased with the increase of damage times. MMT could enhance the aging resistance performance of asphalt. The volatilization of light components in asphalt was inhibited in short term aging, while the number of molecular chains, length of branched chains and content of small molecules in asphalt were less affected by aging, thus slowing down the effect of aging on the healing performance of asphalt. However, with the extension of aging time, the layered MMT in asphalt was separated from the asphalt phase, while the aging resistance performance of MMT was effected. At this stage, nano modified asphalt basically lost healing ability under multiple damage.
Key words:  road engineering    thermal oxidative aging    nano montmorillonite (MMT)    multiple damage self healing    microscopic mechanism
出版日期:  2022-05-10      发布日期:  2022-05-09
ZTFLH:  U414  
基金资助: 中央高校基本科研业务费基金(2572020AW51);黑龙江省交通运输厅科技项目(201943219101)
通讯作者:  chengpeifeng@nefu.edu.cn   
作者简介:  程培峰,工学博士,东北林业大学土木工程学院教授,院长,博士研究生导师。2003年3月于日本国立爱媛大学交通土建专业取得博士学位。主要从事路基路面材料与结构方向的研究工作,发表学术论文200余篇,其中SCI、EI检索论文30余篇。
引用本文:    
程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
CHENG Peifeng, YANG Zonghao, ZHANG Zhanming, XU Jin. Analysis of Healing Properties and Microscopic Mechanism of Nano Montmorillonite/SBS Composite Modified Asphalt Under Heat Aging. Materials Reports, 2022, 36(9): 21020100-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21020100  或          http://www.mater-rep.com/CN/Y2022/V36/I9/21020100
1 Fan S P, Zhu H Z. Materials Reports,2021,35(18),18090(in Chinese).
范世平, 朱洪洲. 材料导报, 2021, 35(18), 18090.
2 Liang B, Lan F, Zheng J L. Materials Reports, 2021, 35(9), 9083(in Chinese).
梁波, 兰芳, 郑建龙. 材料导报, 2021, 35(9), 9083.
3 Sun D Q, Sun G Q, Zhu X Y, et al. Advances in Colloid and Interface Science, 2018, 256, 65.
4 Gupata S, Zhang Q, Emrick T, et al. Nature Materials,2006,5(3),229.
5 Amin G M, Esmail A. Journal of Central South University, 2017, 24(5), 1019.
6 Amin G M, Esmail A. International Journal of Pavement Engineering, 2019, 20(1), 89.
7 Gonzalez T I, José N C. Construction and Building Materials, 2020, 258, 1.
8 Xiang H, Zhang W W, Liu P, et al. Journal of Building Materials, 2019, 22(4), 592(in Chinese).
向浩, 张文武, 刘鹏, 等. 建筑材料学报, 2019, 22(4), 592.
9 Wang C, Chen Y F, Cao W. Construction and Building Materials, 2019, 221(10), 553.
10 Yu T J, Zhang H T, Wang Y. Construction and Building Materials, 2020, 250, 1.
11 Cui Y N, Liu T. Journal of Building Materials, 2018, 21(4), 626(in Chinese).
崔亚楠, 刘涛. 建筑材料学报, 2018, 21(4), 626.
12 Zhang S, Zhang J. Materials Reports B: Research Papers, 2020, 34(2), 4037(in Chinese).
张帅,张健. 材料导报:研究篇, 2020, 34(2), 4037.
13 Tan Z H, Wang J J,Shi Z N. Journal of Central South University, 2021, 27(12), 3888.
14 Lu J. Study on aging behavior and recycling technique of asphalt pavement. Ph.D. Thesis, Chang'an University, China, 2008(in Chinese).
芦军. 沥青路面老化行为与再生技术研究. 博士学位论文, 长安大学, 2008.
15 Zhang Z D, Zhang G K, Zhang H T. Forest Engineering, 2014, 30(1), 131(in Chinese).
张振德, 张广阔, 张海涛. 森林工程, 2014, 30(1), 131.
16 Qiu H P. Experimental study on fatigue self-healing properties of asphalt and asphalt mixture under UV aging. Master's Thesis, Inner Mongolia University of Technology, China, 2019(in Chinese).
邱贺枰. 紫外老化作用下沥青及沥青混合料疲劳自愈性能研究. 硕士学位论文, 内蒙古工业大学, 2019.
17 Tan Y Q, Li G N, Shan L Y, et al. Journal of Traffic and Transportation Engineering, 2020, 20(6), 1(in Chinese).
谭忆秋, 李冠男, 单丽岩, 等. 交通运输工程学报,2020,20(6),1.
18 Cheng P F, Zhang Z M, Li Y M. China Synthetic Rubber Industry, 2020, 43(1), 60(in Chinese).
程培峰, 张展铭, 李艺铭. 合成橡胶工业, 2020, 43(1), 60.
19 Li N, Sheng A Q, Zhou B, et al. Journal of Materials Science and Engineering, 2019, 37(5), 812(in Chinese).
李宁, 申爱琴, 周彬, 等. 材料科学与工程学报,2019,37(5),812.
20 Xu Y. Influencing factors and relationship between fatigue and healing properties of asphalt binders. Ph.D. Thesis, Wuhan University of Technology, China, 2018(in Chinese).
许苑. 沥青疲劳性能、自愈合性能的影响因素及相关性研究. 博士学位论文, 武汉理工大学, 2018.
21 Zhang H W, Xie C L, Wang X Y. Highway Engineering, 2015, 40(6), 199(in Chinese).
张洪伟, 谢春磊, 王学营. 公路工程, 2015, 40(6), 199.
22 Tang W, Zi J M, Lyu Y J. Journal of Building Materials, 2017, 20(5), 814(in Chinese).
汤文, 资建民, 吕悦晶.建筑材料学报, 2017, 20(5), 814.
23 Wang L, Chen G, Xing Y M, et al. Journal of Building Materials, 2015, 18(3), 499(in Chinese).
王岚, 陈刚, 邢永明, 等. 建筑材料学报,2015, 18(3), 499.
24 Fang C Q, Wu C X, Yu R E, et al. Polymers for Advanced Technologies, 2013, 24, 1.
25 Yuan D D, Jiang W, Xiao J J, et al. Journal of Chang'an University (Natural Science Edition), 2020, 40(6), 1(in Chinese).
袁东东, 蒋玮, 肖晶晶, 等.长安大学学报(自然科学版),2020,40(6), 1.
26 Tang X D, Han N F, He Z G, et al. Journal of Building Materials, 2010, 13(4), 550(in Chinese).
唐新德, 韩念风, 贺忠国, 等.建筑材料学报, 2010, 13(4), 550.
27 Wu D. Properties of organic montmorillonite-waste crumb rubber compound modified asphalt. Master's Thesis, Changsha University of Science & Technology, China, 2017(in Chinese).
吴栋. 有机蒙脱土-废胶粉复合改性沥青性能研究. 硕士学位论文, 长沙理工大学, 2017.
28 Cong P L, Guo X Z, Mei L N. Fuel, 2020, 279, 1.
29 Sun G Q, Hu M J, Sun D Q, et al. Fuel, 2020, 263, 1.
[1] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[2] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[3] 王一名, 常立君, 李滢. 废弃混凝土再生微粉固化盐渍土的强度特性及微观机理研究[J]. 材料导报, 2021, 35(z2): 268-274.
[4] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(z2): 385-390.
[5] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[6] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[7] 王晓锋, 梁波, 陈玉凡, 张宽宽. 电位滴定法在沥青研究中的应用及展望[J]. 材料导报, 2021, 35(23): 23076-23088.
[8] 范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
[9] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[10] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[11] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[12] 张广泰, 曹银龙, 陆东亮, 王明阳, 张文梅. 热氧老化下废旧轮胎隔震垫隔震性能及压应力相关性研究[J]. 材料导报, 2020, 34(24): 24170-24177.
[13] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[14] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[15] 王淋, 郭乃胜, 温彦凯, 谭忆秋, 尤占平. 考虑老化影响的岩沥青复合改性沥青流变特性及微观机制[J]. 材料导报, 2020, 34(18): 18065-18073.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed