Please wait a minute...
材料导报  2021, Vol. 35 Issue (24): 24081-24087    https://doi.org/10.11896/cldb.20090271
  无机非金属及其复合材料 |
考虑沥青层表面细观构造的探地雷达空隙率检测研究
凌天清1,2, 崔立龙2, 张意3, 田波1, 李定珠2
1 交通运输部公路科学研究所道路结构与材料交通运输行业重点实验室,北京 100088
2 重庆交通大学土木工程学院,重庆 400074
3 重庆建工住宅建设有限公司,重庆 400015
Research on Asphalt Pavement Air Voids Content Estimation Utilizing GPR Considering the Surface Microscopic Structure
LING Tianqing1,2, CUI Lilong2, ZHANG Yi3, TIAN Bo1, LI Dingzhu2
1 Key Laboratory of Transport Industry of Road Structure and Material, Research Institute of Highway, Ministry of Transport, Beijing 100088, China
2 School of Civil Engineering,Chongqing Jiaotong University, Chongqing 400074, China
3 Chongqing Construction Residential Engineering Co., Ltd, Chongqing 400015, China
下载:  全 文 ( PDF ) ( 5266KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青路面空隙率对道路路用性能及服务寿命具有决定性作用,为实现沥青层空隙率精确检测,考虑表面细观构造影响提出一种基于探地雷达的测量方法。首先,通过时域有限差分(FDTD)仿真软件,建立多空隙薄层-均匀空隙层数值模型,量化模拟了表面细观构造对空隙率检测精度的影响。其次,基于全波形反演理论提出一种检测算法,对反射波进行分解并计算均匀空隙层介电常数。最后,通过FDTD数值模型及实验室实测对该算法有效性进行验证。结果表明:均匀层空隙率检测值随薄层空隙率增加先变大后减小,沥青层表面细观构造对空隙率检测精度具有较大影响。反射波经全波形反演法分解重构后与原波形具有较高吻合度,可精确计算均匀层介电常数。相较于传统金属板反射法,全波形反演法FDTD模型空隙率检测误差降低了24.0%,实验室检测误差降低了6.6%,验证了该方法的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
凌天清
崔立龙
张意
田波
李定珠
关键词:  道路工程  沥青路面  空隙率  探地雷达  细观构造  全波形反演    
Abstract: Air voids content is the most important factor for asphalt pavement which have close relationship with road performance and durability. In order to predict the air voids content of asphalt layer with high accuracy, a method was proposed considering the surface microscopic structure based on ground penetrating radar (GPR). Firstly, the numerical model of porous thin layer-uniform voids layer was established based on the finite-difference time-domain (FDTD) software, and the influence of surface microscopic structure on the prediction accuracy of air voids content was quantitatively simulated. After that, the algorithm was developed to decompose the electromagnetic wave reflected from the surface and calculate the dielectric constant of the uniform voids layer based on the full waveform inversion theory. Finally, the effectivity of the algorithm was verified through FDTD numerical models and laboratory measurements. The results show that: the air voids content of the uniform layer first increased and then decreased with the increase of the air voids content of the porous thin layer, and the surface microscopic structure of the asphalt layer influenced the accuracy of air voids content prediction significantly. The reflection wave decomposed and reconstructed by the full waveform inversion method was in good correspondence with the original waveform, and the dielectric constant of the uniform layer can be calculated accurately. Compared to the traditional metal reflection method, the average error of air voids content estimation obtained from the FDTD models and laboratory measurements using the proposed method was reduced by 24.0% and 6.6%, respectively, which verified the feasibility of this method.
Key words:  road engineering    asphalt pavement    air voids content    ground penetrating radar (GPR)    microscopic structure    full waveform inversion
出版日期:  2021-12-25      发布日期:  2021-12-27
ZTFLH:  U418  
基金资助: 道路结构与材料交通运输行业重点实验室(交通运输部公路科学研究所)2019年度开放基金(S282019124);重庆市技术创新与应用发展专项面上项目(cstc2019jscx-msxmX0296)
通讯作者:  lingtq@cqjtu.edu.cn   
作者简介:  凌天清,男,重庆交通大学,教授,博士研究生导师,1996年博士毕业于同济大学,主要从事路基路面设计与维修养护工作。
引用本文:    
凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
LING Tianqing, CUI Lilong, ZHANG Yi, TIAN Bo, LI Dingzhu. Research on Asphalt Pavement Air Voids Content Estimation Utilizing GPR Considering the Surface Microscopic Structure. Materials Reports, 2021, 35(24): 24081-24087.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090271  或          http://www.mater-rep.com/CN/Y2021/V35/I24/24081
1 Al-Qadi I L, Lahouar S, Jiang K, et al. Transportation Research Record Journal of the Transportation Research Board, 2005, 1940(1), 69.
2 Al-Qadi I L, Lahouar S. Materials Evaluation, 2005, 63(9), 921.
3 Al-Qadi I L, Lahouar S. Construction and Building Materials, 2005, 19(10), 763.
4 Al-Qadi I L, Lahouar S. Transportation Research Record: Journal of the Transportation Research Board, 2005, 1907, 80.
5 Al-Qadi I L, Xie W., Roberts R. Ndt & E International, 2008, 41(6), 441.
6 Al-Qadi I L, Leng Z, Larkin A. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2152, 19.
7 Al-Qadi I L, Xie W, Roberts R. Ndt & E International, 2010, 43(1), 20.
8 Khamzin A K, Varnavina A V, Torgashov E V, et al. Construction and Building Materials, 2017, 141, 130.
9 Chang C M, Chen, J S, Wu T B. Journal of Transportation Engineering, 2011, 137(2), 104.
10 Beaucamp B, Fauchard C, Laguerre L, et al. In: 2013 7th international workshop on IEEE, Kyoto, 2013. pp. 1.
11 Araujo S, Beaucamp B, Delbreilh L, et al. Construction and Building Materials, 2017, 154, 1151.
12 Zhao S, Al-Qadi I L. Signal Processing, 2017, 132, 261.
13 Luo R, Yang Y, Yu X H, et al. China Civil Engineering Journal, 2018, 51(12), 133(in Chinese).
罗蓉, 杨洋, 于晓贺, 等. 土木工程学报, 2018, 51(12), 133.
14 Ling T Q, Cui L L, Chen Q Q, et al. Progress in Geophysics, 2019, 34(6), 2467(in Chinese).
凌天清, 崔立龙, 陈巧巧, 等. 地球物理学进展, 2019, 34(6), 2467.
15 Zhong Y H. Inverse analysis of dielectric properties of layered structures and the applications in engineering. Ph.D. Thesis, Dalian University of Technology, China, 2006(in Chinese).
钟燕辉. 层状体系介电特性反演及其工程应用. 博士学位论文, 大连理工大学, 2006.
16 Wu W L, Wang D Y, Zhang X N, et al. Journal of Central and South University (Science and Technology), 2012, 43(6), 2343(in Chinese).
吴文亮, 王端宜, 张肖宁, 等. 中南大学学报(自然科学版), 2012, 43(6), 2343.
17 Wang C, Guo N S, Zhao Y H, et al. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(1), 74(in Chinese).
王聪, 郭乃胜, 赵颖华, 等.吉林大学学报(工学版), 2014, 44(1), 74.
18 Xiao X, Zhang X N. China Journal of Highway and Transport, 2016, 29(8), 22(in Chinese).
肖鑫, 张肖宁. 中国公路学报, 2016, 29(8), 22.
19 Guo N S, You Z P, Tan Y Q, et al. China Journal of Highway and Transport, 2016, 29(8), 12(in Chinese).
郭乃胜, YOU Z P, 谭忆秋, 等. 中国公路学报, 2016, 29(8), 12.
20 Liu T. Research on dielectric property and construction quality assessment of asphalt pavement using nondestructive testing. Ph.D. Thesis, South of China Technology, China, 2016(in Chinese).
刘涛. 基于无损检测方法的沥青路面介电特性与施工质量评价研究. 博士学位论文, 华南理工大学, 2016.
21 Cai Y C, Wang F M, Liu J. Journal of Dalian University of Technology, 2009, 49(4), 571(in Chinese).
蔡迎春, 王复明, 刘俊. 大连理工大学学报, 2009, 49(4), 571.
22 Leng Zhen. Prediction of in-situ asphalt mixture density using ground penetrating radar: theoretical development and field verification. Ph.D. Thesis, University Illinois at Urbana-Champaign, Ubana, IL, USA, 2011.
23 Wang S Q, Zhao, S, Al-Qadi I L. Surveys in Geophysics 2020, 41(3),431.
24 Wilson V, Power C, Giannopoulos A, et al. Journal of Applied Geophy-sics, 2009, 69(3-4), 140.
25 Shangguan P, Al-Qadi I L. IEEE Transactions on Geoscience & Remote Sensing, 2014, 53(3), 1538.
26 Warren C, Giannopoulos A, Giannakis I. Computer Physics Communications, 2016, 209, 163.
27 Zhang W X, Wu G C, Wang, Y M. Progress in Geophysics, 2015, 30(1), 363(in Chinese).
张文祥, 吴国忱, 王玉梅. 地球物理学进展, 2015, 30(1), 363.
28 Qu Y M, Li Z C, Huang J P, et al. Geophysical Prospecting for Petro-leum, 2016, 55(2), 241(in Chinese).
曲英铭, 李振春, 黄建平, 等. 石油物探, 2016, 55(2), 241.
29 Lin P, Peng S P, Lu Y X, et al. Coal Geology & Exploration, 2017, 45(1), 131(in Chinese).
林朋, 彭苏萍, 卢勇旭, 等.煤田地质与勘探, 2017, 45(1), 131.
30 Shi C W, He B S. Oil Geophysical Prospecting, 2018, 53(1),95(in Chinese).
史才旺, 何兵寿. 石油地球物理勘探, 2018, 53(1), 95.
[1] 杨健, 郭乃胜, 郭晓阳, 王志臣, 房辰泽, 褚召阳. 基于分子动力学的泡沫沥青-集料界面黏附性研究[J]. 材料导报, 2021, 35(z2): 138-144.
[2] 戴文亭, 刘丹丹, 郭威, 李颖松, 安胤. 冻融循环条件下硅烷偶联剂改性泡沫沥青混合料的损伤特性[J]. 材料导报, 2021, 35(Z1): 264-268.
[3] 崔立龙, 凌天清, 曾凡贵, 梁丽娟, 李汝凯. 基于探地雷达的密级配覆水沥青层的空隙率检测[J]. 材料导报, 2021, 35(4): 4092-4098.
[4] 王晓锋, 梁波, 陈玉凡, 张宽宽. 电位滴定法在沥青研究中的应用及展望[J]. 材料导报, 2021, 35(23): 23076-23088.
[5] 范世平, 朱洪洲. 细粒式沥青混合料断裂愈合预估模型[J]. 材料导报, 2021, 35(18): 18090-18095.
[6] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[7] 柴金玲, 栗威. 基于GTM的沥青混合料配合比设计方法试验研究[J]. 材料导报, 2020, 34(Z2): 283-287.
[8] 卞立波, 董申, 陶志. 碱激发矿渣/粉煤灰多孔混凝土基本性能试验研究[J]. 材料导报, 2020, 34(Z2): 299-303.
[9] 丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
[10] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[11] 刘涛, 郭乃胜, 谭忆秋, 尤占平, 金鑫. 路用相变材料研究现状和发展趋势[J]. 材料导报, 2020, 34(23): 23179-23189.
[12] 朱旭伟, 李波, 魏定邦, 文卫军, 周家宁. 循环堵塞-清洗对多孔沥青混合料渗水性能的影响[J]. 材料导报, 2020, 34(20): 20040-20045.
[13] 王兆仑, 刘朝晖, 高建华. 高粘度抗滑封装薄层沥青路面长效协同作用机理分析[J]. 材料导报, 2019, 33(Z2): 242-246.
[14] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[15] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[3] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[4] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[5] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[6] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[7] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[8] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[9] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[10] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed