Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9110-9116    https://doi.org/10.11896/cldb.19010079
  无机非金属及其复合材料 |
水泥混凝土路面纹理的研究进展
丛卓红1, 陈恒达1, 郑南翔2, 周晚君1
1 长安大学道路施工技术与装备教育部重点实验室,西安 710064
2 长安大学特殊地区公路工程教育部重点实验室,西安 710064
Surface Texture of Cement Concrete Pavement: a Review
CONG Zhuohong1, CHEN Hengda1, ZHENG Nanxiang2, ZHOU Wanjun1
1 Key Laboratory of Road Construction Technology & Equipment of Ministry of Education, Chang’an University, Xi’an 710064, China
2 Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 5371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 我国是世界上水泥混凝土路面里程最长的国家,水泥路面在我国主要分布于农村公路和高等级公路长隧道中。高速公路长隧道内水泥路面易被磨光呈镜面,路面抗滑性能下降较快,交通事故频发。水泥路面的纹理构造是提供抗滑性能及产生噪音的主要部分。
水泥路面的纹理主要由宏观构造和细观构造组成,宏观构造由施工而成,提供雨天排水通道,防止雨天打滑;细观构造主要来自于水泥砂浆的粗糙度,提供晴天抗滑性能。水泥路面的纹理按施工时机分为新拌混凝土的纹理和硬化混凝土的纹理。新拌混凝土的纹理主要是在摊铺后养生前完成,形式包括:麻袋拉毛纹理、刷毛法纹理、纵向和横向拉槽。横向拉槽是美国新建水泥混凝土路面最常采用的纹理形式,然而也是轮胎-路面噪音最大的纹理形式。硬化混凝土的纹理是在混凝土强度形成后施工,形式主要包括:金刚石刻槽、金刚石研磨、新一代混凝土路面纹理,同时也可作为水泥路面抗滑性能恢复养护措施。金刚石研磨由于集料或者混凝土强度问题,在施工过程中存在缺损,纹理形貌存在突变。新一代混凝土路面纹理是最近20年新发展起来的混凝土路面纹理形式,将研磨与刻槽技术相结合,由槽提供宏观纹理,脊提供微观纹理,且由于面积更大而更稳定。
水泥路面纹理使用过程中的主要问题是噪音和磨损。采用车载声强法评价纹理形式对水泥路面噪音的影响,结果发现,横向拉槽纹理的噪音较大,新一代混凝土路面纹理和金刚石研磨的噪音较小,而露石混凝土路面的噪音较大,将其与金刚石研磨和新一代混凝土路面纹理结合,可显著降低噪音。采用锁轮法评价路面抗滑性能及其衰变,水泥路面抗滑性能的损失主要是宏观构造的磨损造成,新一代混凝土路面纹理随时间的衰变较慢,具有较稳定的抗滑性能。
我国对水泥路面纹理形式的研究较少,主要集中于横向刻槽的施工参数研究,实体工程也主要采用横向刻槽施工工艺。对露石混凝土路面的研究较多,但应用较少。金刚石研磨纹理仍处于室内研究阶段,而新一代混凝土路面纹理尚未引进。
本文归纳了水泥路面纹理的主要形式、施工参数、应用和存在的问题,分析了纹理对噪音的影响、纹理对抗滑性能的影响及使用过程中纹理的磨损。期待新的水泥路面纹理形式可以提供噪音较低、纹理更耐久的路面,以解决长隧道水泥路面的镜面问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丛卓红
陈恒达
郑南翔
周晚君
关键词:  道路工程  水泥混凝土路面  纹理磨损  金刚石研磨  新一代混凝土路面纹理    
Abstract: China is the country with the longest miles of Portland cement concrete (PCC) pavement in the world. PCC pavement is widely applied in rural areas and tunnels of high-grade highway. The surface textures of PCC pavement in long tunnel are easy to be worn to be a mirror. So its surface friction declines rapidly to cause more traffic accidents. Surface textures of PCC pavement are the main parts to provide anti-skidding performance and make noise.
The surface textures of PCC pavement are mainly made up of macrotexture and microtexture. Macrotexture is formed by construction, which allows water to escape beneath a vehicle’s tires to prevent hydroplaning. Microtexture is the fine-scale roughness contributed by the fine aggregate in the concrete mortar to provide surface friction on sunny days. According to the construction time, the textures of PCC pavement can be classified as fresh and harden concrete. Textures for fresh concrete are done between the placement and curing of concrete. The forms include burlap dragging, transverse brooming, transverse or longitudinal tining. Transverse tining is the most common texturing technique used by state highway agencies. Textures for harden concrete are done after the formation of its strength. The forms include diamond grinding, diamond grooving and next generation concrete surface (NGCS). They are also available for restoring surface friction or lowering tire-pavement noise on existing PCC pavement. Because of aggregate and concrete strength, diamond grinding has some defects on land area. The next generation concrete surface is the most recent new concrete texture introduced in the past 20 years. It synthesizes diamond grinding and grooving techniques to make a diffe-rent texture which are more consistent and durable.
The main problems of PCC concrete are tire-pavement noise and wearing of textures. On-Board Sound Intensity (OBSI) is applied to evaluate the noise of textures. Transverse tining makes the loudest noise of all of the textures. NGCS and conventional diamond grinding (CDG) seem to be the quietest pavements. Exposed aggregate makes louder noise itself, but with combination of NGCS or CDG, it can be quiet a lot. The ASTM E274 locked-wheel skid method is used to measure friction. The loss of friction is attributed to the wearing of textures. NGCS has stable friction because of wider land area.
Transverse grooving is widely used in China. There are less researches about PCC textures on mainland. Most of them are focused on the construction parameters of transverse grooving. There are less applications for other forms of textures. For the exposed aggregate, there are more researches than applications. Diamond grinding is still confined to the research stage. It is the first time for the NGCS that is introduced to China.
This review offers the research progress of PCC textures. The types, construction parameters, application and problem were emphasized. Textures have great impact on tire-pavement noise and friction. New textures introduced by this paper could provide reference for the future application of PCC with lower noise and stable friction.
Key words:  road engineering    cement concrete pavement    wearing of surface texture    diamond grinding    next generation concrete surface (NGCS)
                    发布日期:  2020-04-27
ZTFLH:  U416  
基金资助: 国家自然科学基金青年项目(51308061);中央高校基本科研业务费专项资金(300102258105);陕西省自然科学基金项目(2019JM-218)
通讯作者:  czhwh05@163.com   
作者简介:  丛卓红,2007年12月毕业于长安大学,获得博士学位。现为长安大学副教授。2015—2016年间在UC Davis访问学习。主要研究方向为路面材料与养护。主持国家自然科学基金一项,获得甘肃省科技进步奖两项。
引用本文:    
丛卓红, 陈恒达, 郑南翔, 周晚君. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116.
CONG Zhuohong, CHEN Hengda, ZHENG Nanxiang, ZHOU Wanjun. Surface Texture of Cement Concrete Pavement: a Review. Materials Reports, 2020, 34(9): 9110-9116.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19010079  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9110
1 Cong Z H, Wang S, Zheng N X, et al. China Journal of Highway and Transport,2012,25(4),36(in Chinese).
丛卓红,王莎,郑南翔,等.中国公路学报,2012,25(4),36.
2 Xu T, Huang X M, Zhao Y L. Journal of Wuhan University of Technology (Transportation Science & Engineering),2011,35(1),181(in Chinese).
许涛,黄晓明,赵永利.武汉理工大学学报(交通科学与工程版),2011,35(1),181.
3 Huang X M, Xu T, Zeng L. Journal of Highway and Transportation Research and Development,2008,25(8),1(in Chinese).
黄晓明,许涛,曾磊.公路交通科技,2008,25(8),1.
4 Xu X Q, Wu C H, Li S Q, et al. Journal of Wuhan University of Techno-logy (Transportation Science & Engineering),2016(6),1116(in Chinese).
许新权,吴传海,李善强,等.武汉理工大学学报(交通科学与工程版),2016(6),1116.
5 Xu X Q,Wu C H,Li S Q. Guangdong Highway Communications,2016(5),1(in Chinese).
许新权,吴传海,李善强.广东公路交通,2016(5),1.
6 Ni H L, Dai Y H, Zhao Q X. Highway,2010(4),126(in Chinese).
倪洪亮,戴忧华,赵庆鑫.公路,2010(4),126.
7 Zhan W,Lyu Q,Shang Y Q. Journal of Jilin University (Engineering and Technology Edition),2014,44(1),62(in Chinese).
詹伟,吕庆,尚岳全.吉林大学学报(工学版),2014,44(1),62.
8 ACI Committee 325. Materials Journal,1988,85(3),202.
9 PIARC. Technical Committee Report on Surface Characteristics. 18th World Road Congress. Paris,1987.
10 Fu Z, Li H. Highway,2011(1),1(in Chinese).
付智,李红.公路,2011(1),1.
11 Liu Y, Tian B, Niu K M. Journal of Highway and Transportation Research and Development,2012,29(1),28(in Chinese).
刘英,田波,牛开民.公路交通科技,2012,29(1),28.
12 Larry Scofield. Development of Concrete Pavement Textures-Past and Present. Transportation Research Board 89th Annual Meeting, Washington D.C,2010.
13 Beaton J L. Slippery Pavements. Institute of Traffic Engineers, 39th Annual Meeting. Los Angeles,1969,pp.9.
14 Alauddin Ahammed M, Susan L Tighe. Canadian Journal of Civil Engineering,2008,35,727.
15 International Grooving & Grinding Association. Longitudinal Grooving For Bridge Decks,2014.
16 JTG/T F30-2014 technical guidelines for construction of highway cement concrete pavements, China Communications Press, China,2014.
中华人民共和国行业推荐性标准 JTG/T F30-2014 公路水泥混凝土路面施工技术细则,人民交通出版社,2014.
17 Liu Q Q, He S, Yao S G, et al. China Journal of Highway and Transport,1996,9(4),1(in Chinese).
刘清泉,和松,姚思国,等.中国公路学报,1996,9(4),1.
18 Li B. Study on the surface functions for grooved concrete pavement. Ph.D. Thesis, Chang’an University, China,2010(in Chinese).
李波.刻槽混凝土路面表面功能研究.博士学位论文,长安大学,2010.
19 Kuemmel D A, Sontag R C, et al. Noise and Texture on PCC Pavements-Results of a Multi-state Study. Madison: Wisconsin Department of Transportation,2000.
20 Keith W Anderson, Jeff Uhlmeyer, et al. Performance of Concrete Pavements with Longitudinal Tining, Transverse Tining, and Carpet Drag Fi-nish. Olympia: Washington State Department of Transportation,2012.
21 Technical Advisory T 5040.36. Surface Texture for Asphalt and Concrete Pavements. Federal Highway Administration. Washington, D.C,2005.
22 Roger M Larson, Bradley O Hibbs. Tire pavement noise and safety performance. Federal Highway Administration. Washington, D.C,1995.
23 American Association of State Highway and Transportation Officials. AASHTO Guide for Design of Pavement Structures 1993.Washington, D.C,1993.
24 Richard Stubstad, Michael Darter, et al. The Effectiveness of Diamond Grinding Concrete Pavements in California. Sacramento,2005.
25 Larry Scofield. Development and Implementation of the Next Generation Concrete Surface. International Grooving & Grinding Association/American Concrete Pavement Association,2017.
26 George Vorobieff. Grinding Concrete Pavements. North Sydney,2016.
27 Wang P. Study on the surface texture reconstruction technology of existing portland cement concrete pavement. Master’s Thesis, Chang’an University, China,2010(in Chinese).
王鹏.旧水泥路面表面纹理改造技术研究.硕士学位论文,长安大学,2010.
28 Zhou W J. Research on method and evaluation of cement pavement texture restoration.Master’s Thesis,Chang’an University,China,2018(in Chinese).
周晚君.水泥路面纹理构造恢复方法及评价研究.硕士学位论文,长安大学,2018.
29 Tyler Dare, William Thornton, Tanya Wulf, et al. Purdue Acoustical Effects of Grinding and Grooving on Portland Cement Concrete Pavements. Purdue University’s Institute for Safe, Quiet and Durable Highways/American Concrete Pavement Association,2012.
30 Irwin M. Guada, Arash Rezaei, John T Harvey, et al. Evaluation of Grind and Groove (Next Generation Concrete Surface) Pilot Projects in California. University of California Pavement Research Center,2012.
31 International Grooving & Grinding Association. NGCS Test Section Construction on New and Existing Roadways,2014.
32 Larry Scofield. MnROADS NGCS LITE Test Strip Evaluation. American Concrete Pavement Association,2011.
33 AASHTO TP 76-15-Standard method of test for measurement of tire-pavement noise using the On-Board Sound Intensity (OBSI) method. American Association of State and Highway Transportation Officials, Washington, D.C, 2015.
34 Smith K L, Hall J W, Littleton P. NCHRP REPORT 634 :Texturing of Concrete Pavements. National Cooperative Highway Research Program 10-67. Washington, D.C,2009.
35 Hall J W, Smith K L, Littleton P. Texturing of Concrete Pavements Final Report Appendixes A-F. National Cooperative Highway Research Program 10-67. Washington, D.C,2008.
36 Larry Scofield. Chicago I-355 Testing of NCHRP 10-67 Site Locations. American Concrete Pavement Association,2010.
37 Larry Scofield. Kansas I-70 EB Surface Texture Test Section OBSI Evaluation. International Grooving & Grinding Association,2012.
38 Larry Scofield. 2015 OBSI Summary Report. International Grooving & Grinding Association,2015.
39 Larry Scofield. OBSI Testing of MnROADs I-94 WB Exposed Aggregate and Diamond Ground Test sections. International Grooving & Grinding Association,2012.
40 Liu Y M, Han S, Tao Z J, et al. Journal of Chang’an University (Natural Science Edition),2012(4),16(in Chinese).
刘亚敏,韩森,陶志金,等.长安大学学报(自然科学版),2012(4),16.
41 Li B, Zhang Z W, Kang H W, et al. Journal of Traffic and Transportation Engineering,2016,16(1),8(in Chinese).
李波,张正伟,康宏伟,等.交通运输工程学报,2016,16(1),8.
42 ASTM International. Standard Test Method for Skid Resistance of Paved Surfaces Using a Full Scale Tire. ASTM E274/E274M-11, Annual Book of ASTM Standards, Vol. 04.03, West Conshohocken, Penn.,2012.
43 Larry Scofield. Kansas I-70 EB Friction Test Results. International Grooving & Grinding Association,2015.
44 Bernard I Izevbekhai, James Wilde W. Innovative Diamond Grinding on MnROAD Cells 7, 8, 9, and 37. Minnesota Department of Transportation, Mankato,2010.
45 Han S. Study on exposed-aggregate cement concrete pavement. Ph.D. Thesis, Chang’an University, China,2006(in Chinese).
韩森.露石水泥混凝土路面研究.博士学位论文,长安大学,2006.
46 Song Y C, Fu B F, Liang N X. Journal of Chongqing Jiaotong University(Natural Science),2015(6),43(in Chinese).
宋永朝,付波飞,梁乃兴.重庆交通大学学报(自然科学版),2015(6),43.
47 Huo M. Research on skid resistance function attenuation and evaluation method of cement concrete pavement. Master’s Thesis, Chang’an University, China,2009(in Chinese).
霍明.水泥混凝土路面抗滑功能衰减规律及评价方法研究.硕士学位论文,长安大学,2009.
48 Xiao P F. Research on the surface properties and durability of surface texture of cement concrete pavement. Master’s Thesis, Chang’an University, China,2011.
肖鹏飞.水泥混凝土路面表面功能及其耐久性评价方法研究.硕士学位论文,长安大学,2011.
[1] 张勤玲, 黄志义. FTIR分峰拟合法定量分析沥青胶浆在含盐高温高湿环境中的结构变化[J]. 材料导报, 2020, 34(8): 8083-8089.
[2] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[3] 熊锐, 杨发, 关博文, 谢超, 李立顶, 盛燕萍, 陈华鑫. 路用高抗滑集料耐磨性能评价与机理分析[J]. 材料导报, 2019, 33(20): 3436-3440.
[4] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[5] 刘子铭,陈华鑫,熊锐,王泳丹,王小雯. 复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 295-300.
[6] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[7] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[8] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[9] 姚晓光,张万磊, 张争奇,栗培龙. 老化SBS改性沥青二次改性再生工艺及机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 79-85.
[10] 熊锐, 杨晓凯, 杨发, 刘子铭, 王小雯, 陈华鑫. 活化煤矸石改性沥青胶浆粉胶比确定及粘温特性研究*[J]. 《材料导报》期刊社, 2017, 31(2): 121-125.
[11] 刘祥, 张正伟, 杨小龙, 邹晓龙. 多聚磷酸改性沥青研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(19): 104-111.
[12] 高英力, 李学坤, 代凯明, 余先明, 袁江. 超疏水仿生水泥混凝土路面防覆冰技术及效能评价*[J]. 《材料导报》期刊社, 2017, 31(14): 132-137.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed