Please wait a minute...
材料导报  2020, Vol. 34 Issue (9): 9117-9123    https://doi.org/10.11896/cldb.18110130
  金属与金属基复合材料 |
金属触头电接触性能研究进展
王塞北1,2,3, 彭明军1, 孙勇1, 谢明2, 王松3, 段永华1, 陈松3, 刘满门3, 杨有才3
1 昆明理工大学材料科学与工程学院,昆明 650093
2 贵研铂业股份有限公司稀贵金属综合利用新技术国家重点实验室,昆明 650106
3 昆明贵金属研究所,昆明 650106
Research Progress on Electrical Contact Performance of Metal Contacts
WANG Saibei1,2,3, PENG Mingjun1, SUN Yong1, XIE Ming2, WANG Song3, DUAN Yonghua1, CHEN Song3, LIU Manmen3, YANG Youcai3
1 Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, Sino-Platinum Metals Co. Ltd., Kunming 650106, China
3 Kunming Institute of Precious Metals, Kunming 650106, China
下载:  全 文 ( PDF ) ( 1784KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 日常生活中,所有的电力传输和分配、大部分控制系统和大多数信息交换,都依赖于通过电接触实现电流传输。触头承担这种接通、承载和分断电流的作用,其电接触性能影响甚至决定着整个电路系统的质量、性能、使用寿命与技术水平。触头一旦失效将导致严重的后果,小到家电开关如电灯无法点亮,大到电力系统无法正常供电,使一个大都市的交通、生活等瘫痪。基于电接触性能的重要性,自20世纪50年代电接触形成一门独立的学科以来,该领域一直是相关学者研究的重点。
电接触的产生、持续和消除是一个复杂的物理、化学过程,是力、热、电、磁及材料冶金效应互相作用的结果,其复杂性使得人们对很多电接触现象、过程的本质和作用机理认识不够深入和透彻,需要进一步的研究探索。同时,随着时代发展和科技进步,不断涌现的新材料(例如针对碳纳米管和石墨烯材料接触电阻的研究)、新的使用要求(例如在特高压输电领域进一步提高动态接触电阻测量模型的精度和有效性)以及新的服役条件和应用环境(例如针对我国高速铁路轮轨的接触电阻研究),对电接触性能的研究提出了新的挑战,促使相关研究亟需在深度上进一步深化,同时在广度上进一步拓展。
近年来,电接触性能在不同方面都取得了不少研究进展。在接触电阻方面,引入了一些新的计算方法,使数学模型得到不断的改进和优化。在中高压电领域,学者不断改进高压断路器动态接触电阻的测量方法和计算模型,获得了更为精准的动态接触电阻,对各种影响因素的研究也更加深入,利用动态接触电阻对设备状态的评估和预测进行了初步的探索。材料转移方面,伴随微机电系统的发展,在微观及更小尺度上,研究者利用一些异于传统的新方法、新设备和新模型,发现了与宏观尺度不同的材料转移机理。低压电器领域以替代“万能触头”银氧化隔为目标,高压和真空电器领域以提高Cu基电接触材料性能为目标,学者们主要通过合金化和复合化研发了众多新材料,电侵蚀性能的研究主要围绕这些新材料展开。研究发现,不论对银基还是铜基电接触材料,新型可加工陶瓷材料MAX相是一种改善电弧侵蚀的潜在增强相。此外,增强相颗粒尺寸减小可以提升抗电侵蚀性能。
本文对近年来金属触头电接触性能的研究进展进行了归纳总结,分别从普遍关注的接触电阻、材料转移、电侵蚀性能三个方面阐述了国内外对触头电接触性能的研究现状,最后,对电接触性能未来的研究趋势和热点进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王塞北
彭明军
孙勇
谢明
王松
段永华
陈松
刘满门
杨有才
关键词:  电接触性能  接触电阻  材料转移  电弧侵蚀    
Abstract: In everyday life, all electricity transmission and distribution, most control systems, and most information interchanges depend upon the electrical contact to achieve current transport. The electrical contact components affect and even govern quality, performance, service life and technical level of the whole circuit system. The electrical contact component failure will cause a series of serious effects, such as lights are fail to be lighted, and power system cannot supply electricity normally, which will paralyze the traffic and life of a metropolis. Therefore, since electrical contact formed an independent discipline in the 1950s, electrical contact performance has attracted increasingly interest in related fields due to its importance.
The generation, persistence and elimination of electrical contact are complex physical and chemical processes, which is the result of the inte-ractions of force, heat, electricity, magnetism and metallurgy effects. The complexity of electrical contact makes people lack deep and thorough understanding of many electrical contact phenomena, the process nature and action mechanism, which needs further exploration. Meanwhile, with the development of society and technology, novel materials (carbon nanotubes and graphene materials with the contact resistance), new usage requirements (the increasing precision and validity of dynamic contact resistance measurement in the field of ultra-high voltage power transmission) and new service conditions and application environment (the wheel-rail contact resistance in China’s high-speed rail system) are constantly emerging. These new challenges to the electrical contact properties make it urgent to further deepen the related research in depth and expand the scope at the same time.
Recently, many developments have been made in different aspects of electrical contact performance. In the aspect of contact resistance, some new calculation methods are introduced to improve and optimize the mathematical model. In the field of medium and high voltage electricity, the measurement method and calculation model of dynamic contact resistance of high voltage circuit breakers have been continuously improved. Besides, to obtain more accurate dynamic contact resistances, more in-depth investigations on various influencing factors were carried out. Meanwhile, the evaluation and prediction of equipment condition by using dynamic contact resistance were preliminarily explored. As for material transfer, with the development of micro-electro-mechanical systems, different material transfer mechanisms at micro and smaller scales have been found by using some new methods, new equipment and new models, which are different from the traditional ones. To replace the "universal contact" silver cadmium oxide in the field of low-voltage electrical appliances, and to improve the performance of copper-based electrical contact materials in the field of high-voltage and vacuum electrical appliances, many new materials have been developed by alloying and compounding, therefore, the investigations of electrical erosion performance is mainly centered on these new materials. It is found that MAX phase, a new machinable ceramic material, is a promising strengthening phase to improve arc erosion for both silver-based and copper-based electrical contact materials. In addition, the resistance to electrical erosion can be improved by reducing the particle size of reinforced phase.
In this work, the developments of electrical contact performances in recent years are summarized. The research status of electrical contact performances at home and abroad are detailed from contact resistance, material transfer and electrical erosion. Finally, the future research trends and hot spots of electrical contact performances are prospected.
Key words:  electrical contact performance    contact resistance    material transfer    arc erosion
                    发布日期:  2020-04-27
ZTFLH:  TG146.3  
  TM20  
基金资助: 国家自然科学基金青年基金(51507075;51707087);国家自然科学基金地区基金(51767011);国家自然科学基金云南联合基金(u1602271);云南省应用基础面上项目(2014FB164; 2015FA042;2016FB092)
通讯作者:  pmj5530594@kmust.edu.cn   
作者简介:  王塞北,2010年6月毕业于昆明理工大学,获得材料学工学硕士学位。现为昆明贵金属研究所高级工程师。目前主要研究领域为稀贵金属电接触材料和有限元模拟计算。
彭明军,昆明理工大学材料科学与工程学院讲师。2007年6月在昆明理工大学材料科学与工程学院材料学专业取得博士学位。主要从事铝蜂窝材料和有限元模拟计算的研究工作。
引用本文:    
王塞北, 彭明军, 孙勇, 谢明, 王松, 段永华, 陈松, 刘满门, 杨有才. 金属触头电接触性能研究进展[J]. 材料导报, 2020, 34(9): 9117-9123.
WANG Saibei, PENG Mingjun, SUN Yong, XIE Ming, WANG Song, DUAN Yonghua, CHEN Song, LIU Manmen, YANG Youcai. Research Progress on Electrical Contact Performance of Metal Contacts. Materials Reports, 2020, 34(9): 9117-9123.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18110130  或          http://www.mater-rep.com/CN/Y2020/V34/I9/9117
1 Rong M Z. Electric contacts theory, Mechanical Industry Press, China,2004(in Chinese).
荣命哲.电接触理论,机械工业出版社,2004.
2 Guo F Y, Chen Z H. Electric contact theory and its application technology, China Electric Power Press, China,2008(in Chinese).
郭凤仪,陈忠华.电接触理论及其应用技术,中国电力出版社,2008.
3 Cheng L C. Electric contacts theory and application, Mechanical Industry Press, China,1998(in Chinese).
程礼椿.电接触理论及应用,机械工业出版社,1998.
4 Wei Z J. Preparation and properties of Ag/ZnO electrical contact material thesis for material. Ph.D. Thesis, Zhejiang University, China,2016(in Chinese).
魏志君.Ag/ZnO电接触材料制备及性能研究.博士学位论文,浙江大学,2016.
5 Yu W Y. The preparation, friction and wear properties of electrical contact graphene (graphite)-silver matrix composites. Master’s Thesis, Hefei University of Technology, China,2015(in Chinese).
余维延.电接触用石墨烯(石墨)-银基复合材料的制备及摩擦磨损性能研究.硕士学位论文,合肥工业大学,2015.
6 Shao W Z, Cui Y S, Yang D Z. Electrical Engineering Alloys,1999(1),11(in Chinese).
邵文柱,崔玉胜,杨德庄.电工合金,1990(1),11.
7 Wang R J, Wang J B, Song Y K, et al. Electrical Engineering Materials,2014(4),15(in Chinese).
王瑞娟,王俊勃,宋宇宽,等.电工材料,2014(4),15.
8 Shen J. Preparation and properties of AgCr contact material by mechanical alloying. Master’s Thesis, Jinan University, China,2010(in Chinese).
沈娇.机械合金化法制备AgCr触头材料及其性能研究.硕士学位论文,暨南大学,2010.
9 Yuan M Y, Wang H. Electromechanical Components,2017,37(4),37(in Chinese).
袁名扬,王浩.机电元件,2017,37(4),37.
10 Wang G, Du Z Y. Journal of Hunan University (Natural Sciences),2017,44(8),117(in Chinese).
王刚,杜志叶.湖南大学学报(自然科学版),2017,44(8),117.
11 Wang G, Tan S W, He Z F, et al. Journal of Huaqiao University (Natural Sciences),2017,38(18),86(in Chinese).
王刚,谭盛武,何子博,等.华侨大学学报(自然科学版),2017,38(18),86.
12 Wang G, Wang Z J, Yang X K, et al. Journal of Kunming University of Science and Technology (Natural Sciences),2017,42(1),39(in Chinese).
王刚,王之军,杨欣可,等.昆明理工大学学报,2017,42(1),39.
13 Wang G, Yao Y Q, Zhang B, et al. Journal of Henan University of Science and Technology (Natural Sciences),2018,37(2),99(in Chinese).
王刚,姚永琪,张博,等.河南理工大学学报(自然科学版),2018,37(2),99.
14 Wang G, Tan S W, Lin S J, et al. Journal of Naval University of Engineering,2017,29(4),59(in Chinese).
王刚,谭盛武,林生军,等.海军工程大学学报,2017,29(4),59.
15 Wang G, Wang Z J, Zhao L L, et al. Journal of Harbin University of Science and Technology,2018,23(2),104(in Chinese).
王刚,王之军,赵丽丽,等.哈尔滨理工大学学报,2018,23(2),104.
16 Wang G, Tan S W, Lin S J, et al. High Voltage Engineering,2017,43(3),940(in Chinese).
王刚,谭盛武,林生军,等.高电压技术,2017,43(3),940.
17 Jordi Roger Riba, Antonio Giuseppe Mancini, Carlos Abomailek, et al. Measurement,2018,114,44.
18 Qiu Diankai, Peng Linfa, Yi Peiyun, et al. International Journal of Mechanical Sciences,2017,124,37.
19 Fu Z, Chen W J, Li Z B, et al. High Voltage Engineering,2017,43(5),1535(in Chinese).
傅中,陈维江,李志兵,等.高压电技术,2017,43(5),1535.
20 Liu Yakui, Zhang Guogang, Yang Jinggang, et al. IEEE Transactions on Components, Packaging and Manufacturing Technology,2018,8(1),82.
21 Liu Yakui, Zhang Guogang, Qin Hao, et al. IET Generation, Transmission & Distribution,2018,12(8),1815.
22 Herbet Sousa, Adriano Oliveira, Henrique Santana, et al. In: 2018 Simposio Brasileiro de Sistemas Eletricos (SBSE). Niteroi,2018,pp.1815.
23 Lan L, Wu Y, Wen X S, et al. High Voltage Apparatus,2018,54(1),0082(in Chinese).
蓝磊,吴杨,文习山,等.高压电器,2018,54(1),0082.
24 Kerim Obaranin, Radenko Ostojic' , Samir Duzdanovic' . In: 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija,2018,pp.1044.
25 Mohammad Abdollah, Ali Asghar Razi-Kazemi. In: 2017 Iranian Confe-rence on Electrical Engineering (ICEE). Tehran,2017,pp.1139.
26 Cheng Tingting, Gao Wensheng, Liu Weidong, et al. Electric Power Systems Research,2018,163,725.
27 Wang Q P. Electric arc theory, Mechanical Industry Press, China,1991(in Chinese).
王其平.电器电弧理论,机械工业出版社,1991.
28 Erwin W Müller. Naturwissenschaften,1941,29(35),533.
29 Liang L H, Zhang Y X, Liu Y, et al. Chinese Journal of Solid Mecha-nics,2010,31(2),164(in Chinese).
梁利华,张元祥,刘勇,等.固体力学学报,2010,31(2),164.
30 Ragnar Holm. Electric contacts: Theory and Application, Springer-Verlag Berlin Beideiberg, Germany,1967.
31 Werner F Rieder. IEEE Transactions on Components and Packaging Technologies,2000,23(2),286.
32 Paul G Slade. Electrical contacts: principles and applications, CRC Press, America,1999.
33 Christophe Poulain, Alexis Peschot, Maxime Vincent, et al. In: 2011 IEEE 57th Holm Conference on Electrical Contacts (Holm). Minneapolis,2011,pp.1.
34 Alexis Peschot, Christophe Poulain, Frédéric Souchon, et al. Microelectronics Reliability,2012,52,2261.
35 Alexis Peschot, Christophe Poulain, Sibuet H, et al. In: 2013 IEEE International Reliability Physics Symposium (IRPS). Anaheim,2013,pp.14.
36 Ryan Hennessy, Anirban Basu, George G Adams, et al. Journal of Micromechanics and Microengineering,2013,23(5),1.
37 Li Hangyu, Wang Xianhui, Liu Yanfeng, et al. Vacuum,2017,135,55.
38 Li Hangyu, Wang Xianhui, Guo Xiuhua, et al. Materials & Design,2017,114,139.
39 Li Hangyu, Wang Xianhui, Xi Yong, et al. Materials & Design,2017,121,85.
40 Zhou M X. Low voltage electrical design manua, Mechanical Industry Press, China,1992(in Chinese).
周茂祥.低压电器设计手册,机械工业出版社,1992.
41 Zhou W P. High Voltage Apparatus,1994,30(5),12(in Chinese).
周武平.高压电器,1994,30(5),12.
42 Wu X X, Di M H, Li Z B, et al. Low Voltage Apparatus,2003(5),6(in Chinese).
吴细秀,狄美华,李震彪,等.低压电器,2003(5),6.
43 Liu F F, Chen J C, Guo Y C, et al. Precious Metals,2007,28(3),24(in Chinese).
刘方方,陈敬超,郭迎春,等.贵金属,2007,28(3),24.
44 Wang S X. Low Voltage Apparatus,1992(1),15(in Chinese).
王绍雄.低压电器,1992(1),15.
45 Ye J J, Xiong W H, Xu J, et al. Materials Review,2001,21(2),87(in Chinese).
叶家健,熊惟皓,徐坚,等.材料导报,2001,21(2),87.
46 Pu C J, Xie M, Du W J, et al. Materials Review A: Review Papers,2014,28(4),22(in Chinese).
溥存继,谢明,杜文佳,等.材料导报:综述篇,2014,28(4),22.
47 Xie M, Wang S, Fu Z X, et al. Electrical Engineering Materials,2013(2),36(in Chinese).
谢明,王松,付作鑫,等.电工材料,2013(2),36.
48 Dev S C, Basak O, Mohanty O N. Journal of Materials Science,1993,28(24),6540.
49 Wang S, Fu Z X, Wang S B, et al. Precious Metal,2013,34(1),79(in Chinese).
王松,付作鑫,王塞北,等.贵金属,2013,34(1),79.
50 Ren W J, Wang X H, Zhang M, et al. Rare Metal Materials and Engineering,2016,45(8),2075(in Chinese).
任维佳,王献辉,张苗,等.稀有金属材料与工程,2016,45(8),2075.
51 Zhang M, Wang X H, Yang X H, et al. Transactions of Nonferrous Metals Society of China,2016,26(3),783.
52 Tao Q Q, Zhou X L, Zhou Y H, et al. Rare Metal Materials and Engineering,2015,44(5),1219(in Chinese).
陶麒鹦,周晓龙,周允红,等.稀有金属材料与工程,2015,44(5),1219.
53 Ding Jianxiang, Tian Wubian, Zhang Peigen, et al. Journal of Alloys and Compounds,2018,740,669.
54 Zheng Z. Study on the structure and properties of AgSnO2NiO electrical contact materials. Master’s Thesis, Kunming University of Science and Technology, China,2017(in Chinese).
郑忠.AgSnO2NiO电触头材料的组织与性能研究.硕士学位论文,昆明理工大学,2017.
55 Cao F. Preparation and performance research on lower silver nano-Ag-Ni-SnO2 electrical contact materials. Master’s Thesis, Xi’an Polytechnic University, China,2017(in Chinese).
曹风.低银纳米AgNiSnO2电触头材料的制备及性能研究.硕士学位论文,西安工程大学,2017.
56 Zhang L J, Shen T, Shen Q H, et al. Rare Metal Materials and Enginee-ring,2016,45(7),1664.
57 Wu Chunping, Yi Danqing, Weng Wei, et al. Materials and Design,2015,85,511.
58 Wang Xianhui, Yang Hao, Liang Shuhua, et al. Rare Metal Materials and Engineering,2015,44(11),2612.
59 Paul G Slade. IEEE Transactions on Components, Packaging and Manufacturing Technology: Part A,1994,17(1),96.
60 Milenko Braunovic, Valery V Konchits, Nikolai K Myshkin. Electrical contacts fundamentals, applications, and technology, Mechanical Industry Press,2016(in Chinese).
米兰科·布朗诺维克,瓦乐里·V·康奇兹,尼克莱·K·米西金.电接触理论、应用与技术,机械工业出版社,2016.
61 Sun C X, Wang J, Yan P. High Voltage Apparatus,2012,48(1),82(in Chinese).
孙财新,王珏,严萍,等.高压电器,2012,48(1),82.
62 Zhu S X, Liu Y, Li G H, et al. Transactions of Materials and Heat Treatment,2016,37(7),12(in Chinese).
朱顺新,刘勇,李国辉,等.材料热处理学报,2016,37(7),12.
63 Zhu S X. Microstructure and performance of Cu-Cr electrical contact composites sintering by SPS. Master’s Thesis, Henan University of Science and Technology, China,2017(in Chinese).
朱顺新.SPS制备Cu-Cr电接触复合材料的组织与性能.硕士学位论文,河南科技大学,2017.
64 Zhu Shunxin, Liu Yong, Tian Baohong, et al. Vacuum,2017,143,129.
65 Rieder W F, Schussek M, Glatzle W, et al. IEEE Transactions on Components, Hybrids, and Manufacturing Technology,1989,12(2),273.
66 Ding Binjun, Yang Zhimao, Wang Xiaotian. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A,1996,19(12),76.
67 Zhao L J, Li Z B, Wang K, et al. High Voltage Apparatus,2012,48(5),15(in Chinese).
赵来军,李震彪,王珂,等.高压电器,2012,48(5),15.
68 Shi K Y. Study on Cu-Cr nano composites prepared by high energy ball milling and spark plasma sintering. Ph.D. Thesis, Huazhong University of Science and Technology, China,2013(in Chinese).
史昆玉.高能球磨-放电等离子烧结CuCr纳米复合材料的研究,博士学位论文,华中科技大学,2013.
69 Liu J Y. Research on electrical performance of nanocrystalline CuCr25 and AgSnO2 contact. Master’s Thesis, Huazhong University of Science and Technology, China,2015(in Chinese).
刘金友.纳米晶CuCr25和AgSnO2触头电性能研究.硕士学位论文,华中科技大学,2015.
70 Xu G D. Comparative study on electrical properties of nanocrystalline and microcrystalline CuCr25 contact material. Master’s Thesis, Huazhong University of Science and Technology, China,2013(in Chinese).
许光达.真空断路器纳米与微晶CuCr25触头材料电性能比较研究.硕士学位论文,华中科技大学,2013.
71 Wang S, Chen Y T, Zhang J M, et al. Precious Metal,2014,35(2),1.
72 Zhou Yanjun, Song Kexing, Xing Jiandong, et al. Acta Metallurgica Sinica (English Letters),2016,29(4),399.
73 Zhang P. Study on arc erosion behaviour of Cu-Ti3SiC2 composite. Ph.D. Thesis, South China University of Technology, China,2014(in Chinese).
张鹏.Cu-Ti3SiC2复合材料的电弧侵蚀行为研究.博士学位论文,华南理工大学,2014.
74 Peng Zhang, Tungwai Leo Ngai, Andi Wang, et al. Vacuum,2017,141,235.
75 Heng Xie, Tungwai Leo Ngai, Peng Zhang, et al. Vacuum,2015,114,26.
76 Huang Xiaochen, Feng Yi, Qian Gang, et al. Science China Technological Sciences,2018,61(4),551.
77 Ma Douqin, Xie Jingpei, Li Jiwen, et al. Journal of Wuhan University of Technology-Materals Science Edition,2017,32(4),816.
78 Hu Ping, Hu Boliang, Wang Kuaishe, et al. Journal of Alloys and Compounds,2016,15,465
79 Zhang Y T, An L B, Cai X Y. Journal of Nanjing Tech University (Natural Science Edition),2018,40(2),47(in Chinese).
张玉婷,安立宝,蔡小勇.南京工业大学学报(自然科学版),2018,40(2),47.
80 An L B, Li W, Chen J. Journal of Beijing University of Technology,2017,43(2),294(in Chinese).
安立宝,李文,陈佳.北京工业大学学报,2017,43(2),294.
81 Han Z X, An L B, Zhang P. New Chemical Materials,2015,43(11),126(in Chinese).
韩子旭,安立宝,张鹏.化工新型材料,2015,43(11),126.
82 Chen Weilin, Liao Yingchin, Lu Yenwen. In: 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems. Kaoh-siung,2017,pp.1116.
[1] 丁健翔,孙正明,张培根,田无边,张亚梅. Ag基触头材料的研究现状与展望[J]. 《材料导报》期刊社, 2018, 32(1): 58-66.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[10] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed