Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (1): 58-66    https://doi.org/10.11896/j.issn.1005-023X.2018.01.007
     材料综述 |
Ag基触头材料的研究现状与展望
丁健翔1(),孙正明1,2,张培根1,田无边1,张亚梅2
1 东南大学材料科学与工程学院,江苏省先进金属材料重点实验室,南京 211189
2 东南大学材料科学与工程学院,江苏省土木工程材料重点实验室,南京 211189
Current Research Status and Outlook of Ag-based Contact Materials
Jianxiang DING1(),Zhengming SUN1,2,Peigen ZHANG1,Wubian TIAN1,Yamei ZHANG2
1 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189
2 Jiangsu Key Laboratory of Construction Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189
下载:  全 文 ( PDF ) ( 1034KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

触头材料是开关系统的关键,其性能决定了电器设备运行的可靠性。低压开关中的触头材料以Ag基为主,Ag/CdO综合性能优异,但是Cd的毒性限制了它的应用。近几十年来,Ag/SnO2、Ag/ZnO、Ag/Ni、Ag/C、Ag/W等触头材料在部分领域替代了Ag/CdO,但是这些替代材料的温升高、接触电阻大、抗材料转移性能差、抗熔焊性能差等问题无法得到有效解决。从触头材料的发展历史出发,围绕应用、制备、性能及研究现状等,介绍了低压开关中常用Ag基触头材料的研究概况,探讨了Ag基触头材料的发展动向,并介绍了MAX作为增强相在Ag基触头材料中应用的前景。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁健翔
孙正明
张培根
田无边
张亚梅
关键词:  Ag基  触头材料  无Cd  电接触性能  MAX    
Abstract: 

Contact material is the key to switching system, and its performance determines the reliability of the electrical equipment during operation. Ag-based contact materials have been widely applied in low-voltage switches. Ag/CdO exhibits excellent properties as a contact material, but the toxicity of Cd is phasing it out. Over the past decades, Ag/SnO2, Ag/ZnO, Ag/Ni, Ag/C, Ag/W have replaced the Ag/CdO in some fields, but such replacement raises some problems such as temperature rise, large contact resistivity, poor anti-welding, weak resistance to material transfer, etc. This paper reviews the background, application, preparation, performance of Ag-based contact materials commonly used in low voltage switches. The trends in electrical contact materials including the prospect of MAX phases as reinforcement in Ag-based contact materials are discussed.

Key words:  Ag-based    contact materials    cadmium-free    contact performance    MAX phase
               出版日期:  2018-01-10      发布日期:  2018-01-10
ZTFLH:  TG146.3  
基金资助: 国家自然科学基金(51671054)
作者简介:  丁健翔:男,1987年生,博士研究生,研究方向为新型Ag基复合触头材料 E-mail: 15295562390@163.com
引用本文:    
丁健翔,孙正明,张培根,田无边,张亚梅. Ag基触头材料的研究现状与展望[J]. 《材料导报》期刊社, 2018, 32(1): 58-66.
Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials. Materials Reports, 2018, 32(1): 58-66.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.01.007  或          http://www.mater-rep.com/CN/Y2018/V32/I1/58
  
  
[1] Schroder K H . Silver-metal oxides as contact materials[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1987,10(1):127.
[2] Morin L, Jemaa N B, Jeannot D , et al. Contacts materials performances under break arc in automotive applications[J]. IEEE Transactions on Components and Packaging Technologies, 2000,23(2):367.
[3] Ksi?zkiewicz A . Contact materials used in low voltage electrical relays[J]. Computer Applications in Electrical Engineering, 2015,13(11):300.
[4] Shea J J . Erosion and resistance characteristics of AgW and AgC contacts[J]. IEEE Transactions on Components and Packaging Technologies, 1999,22(2):331.
[5] Xu C H, Yi D Q, Wu C P , et al. Microstructures and properties of silver-based contact material fabricated by hot extrusion of internal oxidized Ag-Sn-Sb alloy powders[J]. Materials Science and Engineering: A, 2012,538:202.
[6] Joshi P B, Patel R H, Krishnan P S , et al. Powder metallurgical silver-metal oxide electrical contacts by an electroless coating process[J]. Advanced Powder Technology, 1996,7(2):121.
[7] Du Yongguo, Zhang Weijun, Hu Junsui . Electrical contact and electrical contact material(Ⅰ)[J].Electrical Engineering Materials, 2005(2):44(in Chinese).
[7] 堵永国, 张为军, 胡君遂 . 电接触与电接触材料(一)[J]. 电工材料, 2005(2):44.
[8] Windred G . Electrical contact resistance[J]. Journal of the Franklin Institute, 1941,231(6):547.
[9] Holm R, Holm E . Electric contacts handbook[M]. Berlin:Springer, 1958: 16.
[10] Cui Yusheng . Origin and development of international conference on electrical contacts[J]. Electrical Engineering Materials, 2012(4):35(in Chinese).
[10] 崔玉胜 . 国际电接触会议的起源和发展[J]. 电工材料, 2012(4):35.
[11] Fuller T S . Electrical contact: US,1658713A[P]. 1928 -02-03.
[12] Gwyn J C B , Bannockburn I. Electrical contact: US,2300286A[P]. 1942-10-27.
[13] Zhang Wansheng . Basic information of electric contact material abroad[J]. Electrical Engineering Alloy, 1995(1):1(in Chinese).
[13] 张万胜 . 电触头材料国外基本情况[J].电工合金, 1995(1):1.
[14] Cheng Zhong, Liao Hongbin, Zhang Mingjiang , et al. The development situation of electrical contact indusrty in Europe[J]. Electrical Engineering Materials, 2002(3):37(in Chinese).
[14] 陈仲, 廖宏彬, 张明江 , 等. 欧洲电触头产业发展状况[J]. 电工材料, 2002(3):37.
[15] 王建永, 李增峰, 汤慧萍 , 等. 电触头材料发展概况[C]∥中国有色金属学会第十二届材料科学与合金加工学术研讨会文集. 张家界, 2007: 132.
[16] Wang Yonggen . Application of contact materials in low-voltage apparatus[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[16] 王永根 . 电触头材料在低压电器中的应用[D]. 杭州:浙江大学, 2011.
[17] Bai Xiaoping, Lin Wanhuan, Zhang Mingjiang . Contact materials for low voltage electric apparatus[J].Electrical Engineering Materials, 2007(3):12(in Chinese).
[17] 柏小平, 林万焕, 张明江 . 低压电器用电触头材料[J]. 电工材料, 2007(3):12.
[18] Jiang Dezhi, Zhang Jie, Bai Yaling , et al. Application performance and preparation technology of AgNi contact materials[J]. Electrical Engineering Materials, 2014(3):19(in Chinese).
[18] 蒋德志, 章杰, 白娅玲 , 等. AgNi触头材料应用性能及其主要制备工艺[J].电工材料, 2014(3):19.
[19] Wu C, Yi D, Weng W , et al. Arc erosion behavior of Ag/Ni electrical contact materials[J]. Materials & Design, 2015,85:511.
[20] Shao Wenzhu, Cui Yusheng, Yang Dezhuang . Development and status of electrical contact materials[J]. Electrical Engineering Alloy, 1999(1):11(in Chinese).
[20] 邵文柱, 崔玉胜, 杨德庄 . 电接触材料的发展与现状[J]. 电工合金, 1999(1):11.
[21] Huang Xiwen, Hou Yuebin . Research of the electrical properties of the contact materials commonly used in low-voltage devices[J]. Electrical Engineering Materials, 2006(4):26(in Chinese).
[21] 黄锡文, 候月宾 . 常用低压触点材料电性能研究[J]. 电工材料, 2006(4):26.
[22] Mützel T, Niederreuther R. Advanced silver-tin oxide contact materials for relay application [C]∥Proceedings of 26th International Conference on Electrical Contacts. Beijing, 2012.
[23] Huck M, Kraus A, Michal R, et al. Guidelines for the use of Ag/SnO2 contact materials in switching devices for low-voltage power engineering [C]∥Proceedings of the Thirty-Sixth IEEE Holm Conference on and the Fifteenth International Conference on Electrical Contacts. Montreal, 1990: 133.
[24] Zhang Mingjiang . Development situation of AgSnO2 contact materials and their applications in relays[J]. Electrical Engineering Materials, 2004(4):20(in Chinese).
[24] 张明江 . AgSnO2触头材料的发展现状及其在继电器中的应用[J]. 电工材料, 2004(4):20.
[25] Wang Shaoxiong . The wear characteristics and selection of relay contact materials Ⅱ[J]. Low Voltage Apparatus, 1996(2):52(in Chinese).
[25] 王绍雄 . 继电器触头的磨损特性和触头材料的选用Ⅱ[J]. 低压电器, 1996(2):52.
[26] Ksi?zkiewicz A . Comparison of selected contact materials used in low-voltage relays[J]. Poznan University of Technology Academic Journals, 2015,82:207.
[27] Weise W, Malikowski W, Wolmer R , et al. Silver-iron material for electrical switching contacts ( Ⅱ) :US, 5808213A[P]. 1998 -09-15.
[28] Wang Song, Xie Ming, Liu Qing , et al. Silver tin oxide electrical contact material fabricated by internal oxidation[J]. Electrical Engineering Materials, 2014(4):3(in Chinese).
[28] 王松, 谢明, 柳青 , 等. 内氧化法制备银氧化锡电接触材料[J]. 电工材料, 2014(4):3.
[29] Pedder D J . The thermal stability of cadmium oxide in internally oxidized silver-cadmium alloys[J]. Metallurgical and Materials Transactions A, 1978,9(5):659.
[30] Hou Saizhang, Liu Ximing, Zhou Jikou , et al. New process for preparing silver-oxide contact material Transactions of Nonferrous Metals Society of China, 1995,5(3):10(in Chinese).
[30] 侯赛彰, 刘熙明, 周继扣 , 等. 银-氧化锌触头材料制备的新工艺[J]. 中国有色金属学报, 1995,5(3):10.
[31] Fu Shiji, Xie Ming, Chen Li , et al. Ag-SnO2-Y2O3 electrical contact materials prepared by alloy powder pre-oxidation method Chinese Journal of Rare Metals, 2005,29(4):448(in Chinese).
[31] 符世继, 谢明, 陈力 , 等. 合金粉末预氧化法制备Ag-SnO2-Y2O3电接触材料的研究[J]. 稀有金属, 2005,29(4):448.
[32] Zhang Deyuan, Chan Nanping . Silver-tungsten electric contact materials Materials Science and Engineering, 1993,11(1):61(in Chinese).
[32] 张德元, 湛南平 . 银-钨电触头材料[J]. 材料科学与工程, 1993,11(1):61.
[33] Sadahiro T, Takatsu S. Modern developments in powder metallurgy [C]∥Proceedings of the 1980 International Powder Metallurgy Conference and Exhibition. Washington D C, 1981: 561.
[34] Chang S Y, Lin J H, Lin S J , et al. Processing copper and silver matrix composites by electroless plating and hot pressing[J]. Metallurgical and Materials Transactions A, 1999,30(4):1119.
[35] Luo Q, Wang Y, Ding B . Microstructure and arc erosion characteristics of Ag/Ni contacts by mechanical alloying[J]. IEEE Transactions on Components and Packaging Technologies, 2005,28(4):785.
[36] Zoz H, Ren H, Sp?th N . Improve Ag-SnO2 electrical contact material produced by mechanical alloying[J]. Metall-Berlin, 1999,53(7-8):423.
[37] Guzman D, Munoz P, Aguilar C , et al. Synjournal of AgZnO powders by means of a mechanochemical process[J]. Applied Physics A, 2014,117(2):871.
[38] Fu Chong, Wang Junbo, Jiang Bailing , et al. Development of AgSnO2 contact material on preparing methods Foundry Technology, 2009,30(9):1173(in Chinese).
[38] 付翀, 王俊勃, 蒋百灵 , 等. AgSnO2电触头材料制备方法研究现状[J]. 铸造技术, 2009,30(9):1173.
[39] Liu X M, Wu S L, Chu P K , et al. Effects of coating process on the characteristics of Ag-SnO2 contact materials[J]. Materials Chemistry and Physics, 2006,98(2-3):477.
[40] Li Y, Li G, Yin Q . Preparation of ZnO varistors by solution nano-coating technique[J]. Materials Science and Engineering:B, 2006,130(1-3):264.
[41] Swingler J . Performance and arcing characteristics of Ag/Ni contact materials under DC resistive load conditions[J]. IET Science, Measurement & Technology, 2011,5(2):37.
[42] Wingert P C, Leung C H . Comparison of the inherent arc erosion behaviors of silver-cadmium oxide and silver-tin oxide contact materials[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1987,10(1):56.
[43] Zhu Y, Wang J, An L , et al. Preparation and study of nano-Ag/SnO2 electrical contact material doped with titanium element[J]. Rare Metal Materials and Engineering, 2014,43(7):1566.
[44] Zhou Yunhong, Zhou Xiaolong, Tao Qiying , et al. Research progress of AgMeO electrical contact materials[J]. Precious Metals, 2014,35(11):8.
[45] Rehani B, Joshi P B, Khanna P K . Fabrication of silver-graphite contact materials using silver nanopowders[J]. Journal of Materials Engineering and Performance, 2010,19(1):64.
[46] Findik F, Uzun H . Microstructure, hardness and electrical properties of silver-based refractory contact materials[J]. Materials & Design, 2003,24(7):489.
[47] Dev S C, Basak O, Mohanty O N . Development of cadmium-free silver metal-oxide contact materials[J]. Journal of Materials Science, 1993,28(24):6540.
[48] Slade P G . Effect of high temperature on the release of heavy metals from AgCdO and AgSnO2 contacts[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1989,12(1):5.
[49] Directive E U . 96/EC of the European Parliament and of the Council of 27 January 2003 on waste electrical and electronic equipment (WEEE)[J]. Official Journal of the European Union L, 2002,37:24.
[50] Directive E U . 95/EC of the European Parliament and of the Council of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS)[J]. Official Journal of the European Union L, 2002,37:13.
[51] Directive E U . 53/EC of the European Parliament and of the Council of Sep. 18, 2000 on end-of life vehicles(ELV)[J]. Official Journal of the European Communities, 2000.
[52] Behrens V, Honig T, Kraus A , et al. An advanced silver/tin oxide contact material[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology:Part A, 1994,17(1):24.
[53] Francisco H A, Myers M. The effect of various silver tin oxide materials on contact performance under motor load (AC) [C]∥Proceedings of the Forty-Third Ieee Holm Conference on Electrical Contacts. New York, 1997: 254.
[54] Wingert P C, Leung C H . The development of silver-based cadmium-free contact materials[J]. IEEE Transactions on Compon-ents, Hybrids, and Manufacturing Technology, 1989,12(1):16.
[55] Wang J, Liu W, Li D , et al. The behavior and effect of CuO in Ag/SnO2 materials[J]. Journal of Alloys and Compounds, 2014,588:378.
[56] Wang H, Wang J, Du J , et al. Influence of rare earth on the wetting ability of AgSnO2 contact material[J]. Rare Metal Materials and Engineering, 2014,43(8):1846.
[57] Jeannot D, Pinard J, Ramoni P , et al. Physical and chemical properties of metal oxide additions to Ag-SnO2 contact materials and predictions of electrical performance[J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, 1994,17(1):17.
[58] Wojtasik K, Missol W . PM helps develop cadmium-free electrical contacts[J]. Metal Powder Report, 2004,59(7):34.
[59] Ye Q, Wang Y. Redistribution of SnO2 particles in Ag/SnO2 materials during rapid solidification[J]. Materials Science and Engineering: A , 2007, 449- 451(3):1045.
[60] Braumann A K P. The influence of manufacturing process, metal oxide content, and additives on the switching behaviour of Ag/SnO2 in relays [C]∥Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts. Seattle, 2004: 90.
[61] Shibata A. Ag-Metal oxides electrical contact materials containing internally oxidized indium oxides and/or tin oxides:US, 4150982A[P]. 1979 -04-24.
[62] Zhang M, Wang X H, Yang X H , et al. Arc erosion behaviors of AgSnO2 contact materials prepared with different SnO2 particle sizes[J]. Transactions of Nonferrous Metals Society of China, 2016,26(3):783.
[63] Streicher C L E, Bevington R, Allen S . Press-sinter-repress Ag-SnO2 contacts with lithium and copper sintering additives for contactor applications[C]∥Proceedings of the Forth-Seventh IEEE Holm Conference on Electrical Contacts. Montreal, 2001: 27.
[64] Zhou Xiaolong, Chen Jingchao , Sun jialin, et al. Reactive synjournal and severe plastic deformation of AgSnO2 contact materials Transactions of Nonferrous Metals Society of China, 2006,16(5):829(in Chinese).
[64] 周晓龙, 陈敬超, 孙加林 , 等. AgSnO2触头材料的反应合成制备与大塑性变形加工[J]. 中国有色金属学报, 2006,16(5):829.
[65] Wei Zhijun . Preparation and properties of Ag/ZnO electrical contact material[D]. Hangzhou:Zhejiang University, 2016(in Chinese).
[65] 魏志君 . Ag-ZnO电接触材料制备及性能研究[D]. 杭州:浙江大学, 2016.
[66] Schoepf T J, Behrens V, Honig T , et al. Development of silver zinc oxide for general-purpose relays[J]. IEEE Transactions on Components and Packaging Technologies, 2002,25(4):656.
[67] Wei Z J, Zhang L J, Shen T , et al. Effects of oxide-modified spherical ZnO on electrical properties of Ag/ZnO electrical contact material[J]. Journal of Materials Engineering and Performance, 2016,25(9):3662.
[68] Wu C P, Yi D Q, Li J , et al. Investigation on microstructure and performance of Ag/ZnO contact material[J]. Journal of Alloys and Compounds, 2008,457(1-2):565.
[69] Joshia P B, Krishnan P S, Patel R H , et al. Effect of lithium addition on density and oxide-phase morphology of Ag-ZnO electrical contact materials[J]. Materials Letters, 1997,33(3-4):137.
[70] Fan Li . Microstructure and properties of Ag-ZnO composite materials by chemical coprecipitation method Powder Metallurgy Industry, 2013,23(5):26(in Chinese).
[70] 范莉 . 化学共沉淀法制备Ag-ZnO复合材料的显微组织和性能[J]. 粉末冶金工业, 2013,23(5):26.
[71] Joshi P B , Murti N S S, Gadgeel V L. Preparation and characterization of Ag-ZnO powders for applications in electrical contact materials[J]. Journal of Materials Science Letters, 1995,14(16):1099.
[72] Doublet L, Jemaa N B, Hauner F, et al. Make arc erosion and welding tendency under 42 VDC in automotive area [C]∥Proceedings of the Forty-Ninth IEEE Holm Conference on Electrical Contacts. Washington D C, 2003: 158.
[73] Wu Chunping, Chen Jingchao, Zhou Xiaolong , et al. Silver based electrical contact material Yunnan Metallurgy, 2005,34(1):46(in Chinese).
[73] 吴春萍, 陈敬超, 周晓龙 , 等. 银基电接触材料[J]. 云南冶金, 2005,34(1):46.
[74] Guo Tianfu, Fu Chong, Wang Junbo , et al. Research and progress of silver-nickle contact materials containing additives[J]. Electrical Engineering Materials, 2015(2):34(in Chinese).
[74] 郭天福, 付翀, 王俊勃 , 等. 含添加剂的AgNi触头材料研究进展[J]. 电工材料, 2015(2):34.
[75] Qian Baoguang, Geng Haoran, Guo Zhongquan , et al. Development and application of electrical contact materials Materials For Mechanical Engineering, 2004,28(3):7(in Chinese).
[75] 钱宝光, 耿浩然, 郭忠全 , 等. 电触头材料的研究进展与应用[J]. 机械工程材料, 2004,28(3):7.
[76] Wingert R B P, Horn G. The effects of graphite additions on the performance of silver-nickel contacts [C]∥Proceedings of the Thirty-Sixth IEEE Holm Conference on Electrical Contacts and the Fifteenth International Conference on Electrical Contacts. Montreal, 1990: 95.
[77] Tsuji H I K, Kojima K . Manufacturing process and material characteristics of Ag-Ni contacts consisting of nickel-compounded particles[J]. Journal of Materials Science, 1992,27:1179.
[78] Huang Guanglin, Li Guowei, Li Yan , et al. Preparation and performance analysis of AgNi(10) electrical contact material by chemical co-deposition[J]. Electrical Engineering Materials, 2010(1):12(in Chinese).
[78] 黄光临, 李国伟, 李艳 , 等. 化学共沉积AgNi(10)电触点材料的制备及性能分析[J]. 电工材料, 2010(1):12.
[79] Satoh K H M, Miyanami K, Tanimura S , et al. Application of a powder coating method to dispersion of fine Ni powders into Ag-Ni alloy matrix[J]. Powder technology, 1992,70:71.
[80] Wang Heng, Li Suhua, Weng Wei , et al. Development of preparation process for AgNi electrical contact materials[J]. Electrical Engineering Materials, 2013(4):4(in Chinese).
[80] 王珩, 李素华, 翁桅 , 等. AgNi电触头材料制备工艺进展[J]. 电工材料, 2013(4):4.
[81] Wingert P C, Allen S E, Bevington R C . The effects of graphite particle size and processing on the performance of silver-graphite contacts[J]. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1992,15(2):154.
[82] Wingert P C. The effects of interrupting elevated currents on the erosion and structure of silver-graphite [C]∥Proceedings of the Forty-Second IEEE Holm Conference on Electrical Contacts. Joint with the 18th International Conference on Electrical Contacts. Chicago, 1996: 60.
[83] Borkowski P, Walczuk E, Wojcik-Grzybek D, et al. Electrical properties of Ag-C contact materials containing different allotropes of carbon [C]∥Proceedings of the 56th IEEE Holm Conference on Electrical Contacts. Carolina, 2010: 1.
[84] Yi F, Zhang M, Xu Y . Effect of the electric current on the friction and wear properties of the CNT-Ag-G composites Carbon, 2005,43(13):2685.
[84] 刘伟利, 赵斌元, 赖奕坚 , 等. AgC系电接触复合材料[ C]∥第十届中日复合材料学术会议论文集.成都, 2012: 366.
[85] Yu H, Kesim M T, Sun Y , et al. Extended aging of Ag/W circuit breaker contacts:Influence on surface structure, electrical properties, and UL testing performance[J]. Journal of Materials Engineering and Performance, 2016,25(1):91.
[86] Aslanoglu Z , Karaka? Y, ?ve?oglu M L, et al. Effects of nickel addition on properties of Ag-W electrical contact materials[J]. Powder Metallurgy, 2001,44(1):77.
[87] Yu H, Sun Y, Kesim M T , et al. Surface degradation of Ag/W circuit breaker contacts during standardized UL testing[J]. Journal of Materials Engineering and Performance, 2015,24(9):3251.
[88] Qureshi A H, Azhar S M, Hussain N . The effect of cobalt addition on sintering and microstructural behaviour of silver-tungsten (Ag-W) composite[J]. Journal of Thermal Analysis and Calorimetry, 2010,99(1):203.
[89] Allen S E, Streicher E. The effect of microstructure on the electrical performance of Ag-WC-C contact materials [C]∥Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contact. Arlington, 1998: 276.
[90] Gavriliu M L S, Lucaci M, Enescu E . New WAg electrical contacts with ultrafine structure for low voltage devices[J]. Journal of Optoelectronics and Advanced Materials, 2006,8(2):702.
[91] Ray N, Kempf B, Mützel T , et al. Effect of WC particle size and Ag volume fraction on electrical contact resistance and thermal conductivity of Ag-WC contact materials[J]. Materials & Design, 2015,85:412.
[92] Wójcik-Grzybek K F D, Borkowski P . The influence of the microstructure on the switching properties of Ag C, Ag-WC-C and Ag-WC contact materials[J]. Archives of Metallurgy and Materials, 2013,58(4):1059.
[93] Schreiner H. Electrical contact device:US, 3226517A[P]. 1965 -12-28.
[94] Colombier G, Gimenez P, Drapier C, et al. Multi-layer material comprising flexible graphite which is reinforced mechanically, electrically and thermally by a metal and a process for the production thereof:US, 5100737A[P]. 1992 -03-31.
[95] Barsoum M W . The MN+1AXN phases:A new class of solids; thermodynamically stable nanolaminates[J]. Progress in Solid State Chemistry, 2000,28(1-4):201.
[96] Wang J Y, Zhou Y C . Recent progress in theoretical prediction, preparation, and characterization of layered ternary transition-metal carbides[J]. Annual Review of Materials Research, 2009,39:415.
[97] Sun Z M . Progress in research and development on MAX phases: A family of layered ternary compounds[J]. International Materials Reviews, 2011,56(3):143.
[98] Wang X H, Zhou Y C . Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: A review[J]. Journal of
[99] Materials Science & Technology , 2010,26(5):385.
[100] Sun Z M, Hashimoto H, Tian W B , et al. Synjournal of the MAX phases by pulse discharge sintering[J]. International Journal of Applied Ceramic Technology, 2010,7(6):704.
[101] ?berg ?, Isberg P. Contact element:US , 8183489B2[P]. 2012 -05-22.
[102] Zhang Y, Sun Z M, Zhou Y C . Cu/Ti3SiC2 composite:A new electrofriction material[J]. Materials Research Innovations, 1999,3(2):80.
[103] Lu J R, Zhou Y, Zheng Y , et al. Effects of sintering process on the properties of Ti3SiC2/Cu composite[J]. Key Engineering Materials, 2012, 512- 515:377.
[104] Ngai L T, Li Y Y , Zhou Z Y. A study on Ti3SiC2 reinforced copper matrix composite by warm compaction powder metallurgy[J]. Materials Science Forum, 2006, 532- 533:596.
[105] Ngai L T, Zheng W, Li Y . Effect of sintering temperature on the preparation of Cu-Ti3SiC2 metal matrix composite[J]. Progress in Natural Science:Materials International, 2013,23(1):70.
[106] Lu J R, Zhou Y, Zheng Y , et al. Interface structure and wetting behaviour of Cu/Ti3SiC2 system[J]. Advances in Applied Ceramics, 2015,114(1):39.
[107] Zhou Y, Chen B, Wang X , et al. Mechanical properties of Ti3SiC2 particulate reinforced copper prepared by hot pressing of copper coated Ti3SiC2 and copper powder[J]. Materials Science and Technology, 2004,20(5):661.
[108] Dudina D V, Mali V I, Anisimov A G , et al. Ti3SiC2-Cu composites by mechanical milling and spark plasma sintering:Possible microstructure formation scenarios[J]. Metals and Materials International, 2013,19(6):1235.
[109] Zhang Z, Xu S . Copper-Ti3SiC2 composite powder prepared by electroless plating under ultrasonic environment[J]. Rare Metals, 2007,26(4):359.
[110] Zhang J, Zhou Y C . Microstructure, mechanical, and electrical properties of Cu-Ti3AlC2 and in situ Cu-TiCx composites[J]. Journal of Materials Research, 2011,23(4):924.
[111] Yan M, Zeng C, Li Z , et al. Physical, antioxidant and thermal shock properties of Cu/Ti2AlC conductive composites[J]. Journal of Wuhan University of Technology-Materials Science Edition, 2013,28(3):504.
[112] Wu J Y, Zhou Y C, Yan C K . Mechanical and electrical properties of Ti2SnC dispersion-strengthened copper[J]. Zeitschrift für Metallkunde, 2005,96(8):847.
[113] Wu J Y, Zhou Y C, Wang J Y . Tribological behavior of Ti2SnC particulate reinforced copper matrix composites[J]. Materials Science and Engineering:A, 2006,422(1-2):266.
[114] Wu J Y, Zhou Y C, Wang J Y , et al. Interfacial reaction between Cu and Ti2SnC during processing of Cu-Ti2SnC composite[J]. Zeitschrift für Metallkunde, 2005,96(11):1314.
[115] 孙正明, 丁健翔, 张培根 , 等 . 一种Ti3AlC2增强Ag基电触头材料的制备方法:中国, 105624458A[P]. 2016 -06-01.
[116] 孙正明, 张敏, 田无边 , 等 . 一种Ti3SiC2增强Ag基电触头材料的制备方法:中国, 106498206A[P]. 2017 -03-15.
[117] 孙正明, 丁健翔, 张培根 , 等 . 一种Ti2SnC增强Ag基电触头材料的制备方法:中国, 106119593A[P]. 2016 -11-16.
[1] 郑伟, 杨莉, 张培根, 陈坚, 田无边, 张亚梅, 孙正明. 二维材料MXene的储能性能与应用[J]. 材料导报, 2018, 32(15): 2513-2537.
[2] 郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 二维纳米材料MXene的研究进展*[J]. CLDB, 2017, 31(9): 1-14.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed