Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (2): 295-300    https://doi.org/10.11896/j.issn.1005-023X.2018.02.027
  物理   材料研究 |材料 |
复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究
刘子铭1,陈华鑫1,熊锐1,王泳丹2,王小雯1
1 长安大学材料科学与工程学院,西安 710061
2 长安大学公路学院,西安 710064
Experimental Investigation on Properties of Steel Wool Fiber/Brucite Fiber Reinforced Asphalt Mortar
Ziming LIU1,Huaxin CHEN1,Rui XIONG1,Yongdan WANG2,Xiaowen WANG1
1 School of Materials Science and Engineering, Chang’an University, Xi’an 710061;
2 School of Highway, Chang’an University, Xi’an 710064;
下载:  全 文 ( PDF ) ( 4901KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 

通过改变纤维总掺量和两种纤维的体积比,采用延度试验、锥入度试验、布氏旋转粘度试验和动态剪切流变试验研究了混杂纤维沥青胶浆的低温延展性能、抗剪切性能、粘度特性及高温流变特性,同时借助扫描电镜(SEM)对其试样断面进行观察分析。结果表明:沥青胶浆的低温延展性随纤维掺量的增大而降低;在6%纤维总掺量范围内,随着纤维掺量的增大粘度逐渐增大,且增大的幅度减小;当钢丝绒纤维与水镁石纤维体积比为6/4时,沥青胶浆的车辙因子(G */sinδ)、抗剪强度达到最佳值;将两种纤维混杂掺入沥青胶浆中,充分分散,其与沥青粘结良好,发挥了增粘和桥接作用,提高了沥青胶浆的整体稳定性和抵抗永久变形的能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘子铭
陈华鑫
熊锐
王泳丹
王小雯
关键词:  道路工程  钢丝绒纤维  水镁石纤维  沥青胶浆    
Abstract: 

In order to investigate how fibers affect asphalt binder in low-temperature ductility, shear resistance, apparent viscosity and high-temperature rheology, ductility test, cone penetration test, Brookfield viscosity test and dynamic shear rheology test were applied and total adding mass and volume ratio of two type of fibers were considered. And cross sections morphology of samples were observed by scanning electronic microscope. Results showed that increasing addition of fibers could reduced low-temperature ductility. Viscosity was improved by increasing fiber addition but improvement seemed slower when adding proportion was close to 6%; while shear resistance and rut factor (G */sinδ) performed better when volume ratio of steel wool and brucite fiber was 6/4.Therefore,rutting resistance can be improved by viscosity growth and bridging induced by well dispersion and interaction between binder and fibers.

Key words:  road engineering    steel wool fiber    brucite fiber    asphalt mortar
               出版日期:  2018-01-25      发布日期:  2018-01-25
ZTFLH:  U414.1  
基金资助: 青海省重大科技专项(2014-GX-A2A);中央高校基本科研业务费专项资金(310831161010)
引用本文:    
刘子铭,陈华鑫,熊锐,王泳丹,王小雯. 复掺钢丝绒纤维/水镁石纤维沥青胶浆性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 295-300.
Ziming LIU,Huaxin CHEN,Rui XIONG,Yongdan WANG,Xiaowen WANG. Experimental Investigation on Properties of Steel Wool Fiber/Brucite Fiber Reinforced Asphalt Mortar. Materials Reports, 2018, 32(2): 295-300.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.02.027  或          http://www.mater-rep.com/CN/Y2018/V32/I2/295
Index Test method Unit Technical standard Measured value
Penetration(25 ℃,100 g,5 s) T0604 0.1 mm 80100 87
Ductility(15 ℃,5 cm/min) T0605 cm ≥100 >100
Softening point,TR&B T0606 4252 45.6
Solubility T0607 g ≥99 99.8
Flash point (COC) T0611 ≥230 278
RTFOT
(165 ℃,85 min)
Residual penetration
ratio
T0604 % ≥60 66.7
Ductility
(10 ℃,5 cm/min)
T0605 cm 44
Softening point (TR&B) T0606 50
Table 1  Performance of KLM A-90# asphalt
Component SiO2 MgO Al2O3 Fe2O3 FeO CaO Na2O K2O H2O
Content/% 1—3 61—65 0.27 0.6—1 2—6 0.14 0.06 0.17 28.1
表2  水镁石纤维化学组成
图1  水镁石纤维微观形貌
图2  水镁石纤维外观形貌
图3  钢丝绒纤维微观形貌
图4  钢丝绒纤维外观形貌
图5  锥入度实验
图6  Brookfield旋转粘度仪
图7  动态剪切流变仪测试原理
图8  10 ℃延度实验结果
图9  延度试样
图10  抗剪强度随纤维掺量的变化结果
图11  不同纤维掺量下纤维沥青胶浆粘度实验结果
图12  不同纤维掺量下温度对纤维沥青胶浆G*/sinδ的影响
图13  频率对纤维沥青胶浆G*/sinδ的影响
图14  纤维沥青胶浆断面微观形貌
1 Qin Xiao,Shen Aiqin,Guo Yinchuan.Experimental study on road performance of basalt fiber reinforced bitumen mastics[J].Journal of Building Materials, 2016(4):659(in Chinese).
2 覃潇, 申爱琴, 郭寅川 . 玄武岩纤维沥青胶浆性能试验研究[J]. 建筑材料学报, 2016(4):659.
3 Apostolidis P, Liu X, Scarpas A , et al. Advanced evaluation of asphalt mortar for induction healing purposes[J]. Construction and Building Materials, 2016,126:9.
4 García Alvaro, Norambuena-Contreras J, Manfred N . Experimental evaluation of dense asphalt concrete properties for induction heating purposes[J]. Construction and Building Materials, 2013,46:48.
5 García Alvaro, Moises Bueno, Jose Norambuena-Contreras , et al. Induction healing of dense asphalt concrete[J]. Construction and Building Materials, 2013,49:1.
6 García Alvaro, Norambuena-Contreras J , et al. Uniformity and mechanical properties of dense asphalt concrete with steel wool fibers[J]. Construction and Building Materials, 2013,43:107.
7 Guan Bowen . Application of fiber brucite reinforced concrete in highway engineering[D]. Xi’an:Chang’an University, 2010(in Chinese).
8 关博文 . 水镁石纤维路面混凝土公路工程应用研究[D]. 西安:长安大学, 2010.
9 Wang Yan . Application of fiber brucite reinforced concrete in highway engineering[D]. Xi’an:Chang’an University, 2012(in Chinese).
10 王燕 . 水镁石纤维混凝土路面材料及结构设计研究[D]. 西安:长安大学, 2012.
11 Li Feng . The research on the durability of the fiber brucite in the concrete[D]. Xi’an:Chang’an University, 2012(in Chinese).
12 李锋 . 水镁石纤维混凝土的耐久性研究[D]. 西安:长安大学, 2012.
13 Xiong Rui, Yang Xiaokai, Yang Fa, et al.Laboratory investigation of performance of coal gangue powder/brucite fiber modified asphalt mortar[J].Journal of Wuhan University of Technology, 2016(2):11(in Chinese).
14 熊锐, 杨晓凯, 杨发 , 等. 煤矸石粉/水镁石纤维复合改性沥青胶浆性能试验研究[J]. 武汉理工大学学报, 2016(2):11.
15 Xiong Rui, Guan Bowen, Sheng Yanping . Anti-fatigue property of brucite fiber reinforced asphalt mixture under sulfate and dry-wet circle corrosion environment[J]. Journal of Wuhan University of Technology, 2014,36(10):45(in Chinese).
16 熊锐, 关博文, 盛燕萍 . 硫酸盐-干湿循环侵蚀环境下水镁石纤维沥青混合料抗疲劳性能[J]. 武汉理工大学学报, 2014,36(10):45.
17 Wu Mengmeng, Li Rui, Zhang Yuzhen , et al. Study of high and low temprerature performance of fiber-asphalt mortar[J]. Journal of China University of Petroleum(Edition of Natural Science), 2015,39(1):169(in Chinese).
18 吴萌萌, 李睿, 张玉贞 , 等. 纤维沥青胶浆高低温性能研究[J]. 中国石油大学学报(自然科学版), 2015,39(1):169.
19 Chen Huaxin, Xu Qinwu . Experimental study of fibers in stabilizing and reinforcing asphalt binder[J]. Fuel, 2010,89:1616.
20 Chen Huaxin, Zhang Zhengqi, Hu Changshun . Interaction mechanism of asphalt with fiber in pavement[J]. Journal of Chang’an University(Edition of Natural Science), 2002,22(6):5(in Chinese).
21 陈华鑫, 张争奇, 胡长顺 . 纤维沥青路用性能机理[J]. 长安大学学报(自然科学版), 2002,22(6):5.
22 Song Yunxiang, Wei Youpo, Li Yumei , et al. Road performance of basalt fiber reinforced asphalt mastic[J]. Journal of Highway and Transportation Research and Development, 2012,29(8):15(in Chinese).
23 宋云祥, 韦佑坡, 李玉梅 , 等. 玄武岩纤维沥青胶浆的路用性能[J]. 公路交通科技, 2012,29(8):15.
24 Ye Qunshan, Wu Shaopeng . Rheological characteristics of polyester fiber modified asphalt mastic[J]. Journal of Highway and Transportation Research and Development, 2009,26(9):37(in Chinese).
25 叶群山, 吴少鹏 . 聚酯纤维沥青胶浆流变特性研究[J]. 公路交通科技, 2009,26(9):37.
26 Chen Huaxin, Zhang Zhengqi, Hu Changshun . Low-temperature anti-cracking performance of fiber-reinforced asphalt mixture[J]. Journal of South China University of Technology(Edition of Natural Science), 2004,32(4):82(in Chinese).
27 陈华鑫, 张争奇, 胡长顺 . 纤维沥青混合料低温抗裂性能[J]. 华南理工大学学报(自然科学版), 2004,32(4):82.
28 Chen H, Xu Q , et al. Evaluation and design of fiber reinforced asphalt mixture[J]. Material and Design, 2009,30:2595.
29 Dong Biqin, Han Ningxu, Ding Zhu , et al. A preliminary study of synthesized-insitu fiber in cement materials[J]. Construction and Buil-ding Materials, 2013,40:10.
[1] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[2] 张宏, 刘新, 乔志. 沥青胶浆粘度及流变特性的影响因素研究[J]. 材料导报, 2019, 33(14): 2381-2385.
[3] 张航, 郝培文, 凌天清, 王学武, 何亮. 高温重复荷载作用下复合纤维沥青混合料细微观结构分析[J]. 材料导报, 2018, 32(6): 987-994.
[4] 王泳丹, 刘子铭, 郝培文. 废旧玻璃在沥青混合料中的应用研究进展[J]. 材料导报, 2018, 32(15): 2626-2634.
[5] 刘梦梅, 韩 森, 潘 俊, 李 微, 任万艳. 水性环氧树脂乳化沥青在高温、低温和浸水条件下的粘结性能[J]. 《材料导报》期刊社, 2018, 32(10): 1716-1720.
[6] 张争奇, 罗要飞, 张苛. 沥青混合料汉堡车辙试验评价研究综述*[J]. 《材料导报》期刊社, 2017, 31(3): 96-105.
[7] 姚晓光,张万磊, 张争奇,栗培龙. 老化SBS改性沥青二次改性再生工艺及机理研究[J]. 《材料导报》期刊社, 2017, 31(24): 79-85.
[8] 熊锐, 杨晓凯, 杨发, 刘子铭, 王小雯, 陈华鑫. 活化煤矸石改性沥青胶浆粉胶比确定及粘温特性研究*[J]. 《材料导报》期刊社, 2017, 31(2): 121-125.
[9] 刘祥, 张正伟, 杨小龙, 邹晓龙. 多聚磷酸改性沥青研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(19): 104-111.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed