Please wait a minute...
材料导报  2024, Vol. 38 Issue (18): 23050210-9    https://doi.org/10.11896/cldb.23050210
  无机非金属及其复合材料 |
沥青路面表面纹理三维评价方法及其计算边界条件分析
董仕豪1,*, 韩森2,*, 宿金菲1, 陈德3, 苏会锋1
1 山东科技大学交通学院,山东 青岛 266590
2 长安大学公路学院,西安 710064
3 西南交通大学土木工程学院,成都 610031
Three-dimensional Evaluation Method for Asphalt Pavement Surface Texture and Analysis of Its Calculating Boundary Conditions
DONG Shihao1,*, HAN Sen2,*, SU Jinfei1, CHEN De3, SU Huifeng1
1 College of Transportation, Shandong University of Science and Technology, Qingdao 266590, Shandong China
2 School of Highway, Chang’an University, Xi’an 710064, China
3 School of Civil Engineering, Southwest Jiaotong University, Chengdu 610031, China
下载:  全 文 ( PDF ) ( 22963KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了综合评价沥青路面表面纹理的三维特征,推广表面纹理三维评价方法的应用,提出了一套适用性强、计算边界条件明晰的沥青路面表面纹理三维评价指标。首先,利用激光纹理扫描仪采集了不同沥青路面表面纹理的三维点云数据,并分别基于灰度共生矩阵理论和表面纹理偏离基准面的均匀程度,构建了表面纹理水平三维评价指标f8macf9macf8micf9mic和表面纹理分布均匀性三维评价指标σ;然后,以铺砂法、步行式摩擦系数仪和组合表面纹理分布均匀性的测试结果为基准,通过对比三维评价指标和现有二维评价指标与基准指标的相关性,验证了三维评价指标的有效性和优越性;最后,基于表面纹理三维评价指标的计算过程,明确了表面纹理三维评价指标的计算边界条件。研究结果表明:f8macf8mic与基准指标的相关系数R分别为0.934 8和0.803 0,优选f8macf8mic为表面纹理水平三维评价指标;现有的二维评价指标难以准确表征表面纹理的三维分布状态,指标σ可以有效地评价沥青路面表面纹理的三维分布均匀性;只有在相同的计算边界条件下,表面纹理三维评价指标才具有可比性。研究成果有望为沥青路面表面纹理三维评价方法的推广应用提供理论借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董仕豪
韩森
宿金菲
陈德
苏会锋
关键词:  道路工程  三维评价指标  点云数据处理  表面纹理  计算边界条件  沥青路面    
Abstract: To comprehensively evaluate the three-dimensional (3D) characteristics of asphalt pavement surface texture and promote the application of 3D evaluation methods for surface texture, a set of 3D evaluationindices for asphalt pavement surface texture with strong applicability and well-defined calculating boundary conditions were proposed. Firstly, 3D point cloud data of different asphalt pavement surface textures were collected using a laser texture scanner. 3D surface texture level evaluation indices, namely f8mac, f9mac, f8mic, f9mic, and 3D surface texture distribution uniformity evaluation index σ, were constructed based on the gray-level co-occurrence matrix theory and the uniformity of surface texture deviation from the reference plane. Subsequently, using benchmark results obtained from sand patch method, walking friction tester and the distribution uniformity of combined surface texture, the effectiveness and superiority of the proposed 3D evaluation indices were validated by comparing the correlation of them and existing two-dimensional (2D) evaluation indices with benchmark indices. Finally, based on the calculation process of the surface texture 3D evaluation indicators, the calculating boundary conditions of the surface texture 3D evaluation indices were clearly defined. The results showed that the correlation coefficients R of f8mac and f8mic with benchmark indices were 0.934 8 and 0.803 0, respectively. Therefore, f8mac and f8mic were preferred as 3D evaluation indices for asphalt pavement surface texture level. Existing 2D evaluation indices were inadequate for accurately characterizing the 3D distribution of surface texture, and index σ could effectively evaluate the 3D distribution uniformity of asphalt pavement surface texture. Only under the same calculating boundary conditions could the surface texture 3D evaluation indices be comparable. The research results were expected to provide theoretical reference for the promotion and application of 3D evaluation methods for asphalt pavement surface texture.
Key words:  highway engineering    three-dimensional evaluation indices    point cloud data processing    surface texture    calculating boundary conditions    asphalt pavement
发布日期:  2024-10-12
ZTFLH:  U418.1  
基金资助: 国家自然科学基金(52278431);山东省自然科学基金项目(ZR202211280381)
通讯作者:  *董仕豪,通信作者,山东科技大学交通学院副教授。2017年山东理工大学交通工程专业本科毕业,2022年长安大学道路与铁道工程专业博士毕业后到山东科技大学工作至今。目前主要从事道路表面工程、固废资源化利用、人工智能在道路工程的应用等方面的研究工作。发表论文20余篇,包括Computer-Aided Civil and Infrastructure Engineering、Construction and Building Materials、Applied Sciences等。 韩森,通信作者,长安大学公路学院二级教授、博士研究生导师,长安大学新型路面研究所所长,享受国务院政府特殊津贴。1982年西安公路学院本科毕业;1986年获得长安大学工学硕士学位;2006年获得长安大学工学博士学位。1982年起在长安大学任教至今。目前主要的研究方向包括路面工程、道路建筑材料、路面表面功能等。已公开发表论文100余篇,包括Computer-Aided Civil and Infrastructure Engineering、Construction and Building Materials、《中国公路学报》《材料导报》等。dongshihao@sdust.edu.cn;hyram_hs@163.com   
引用本文:    
董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
DONG Shihao, HAN Sen, SU Jinfei, CHEN De, SU Huifeng. Three-dimensional Evaluation Method for Asphalt Pavement Surface Texture and Analysis of Its Calculating Boundary Conditions. Materials Reports, 2024, 38(18): 23050210-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23050210  或          http://www.mater-rep.com/CN/Y2024/V38/I18/23050210
1 ISO13473-1, Characterization of Pavement Texture by Use of Surface Profiles -Part 1:Determination of Mean Profile Depth. 2019.
2 Guo M, Ren X, Jiao Y B, et al. China Journal of Highway and Transport, 2022, 35(4), 41.
郭猛, 任鑫, 焦峪波, 等. 中国公路学报, 2022, 35(4), 41.
3 Chen D. Study on image-based texture analysis method and prediction of skid-resistance & tire/pavement noise reduction of HMA. Ph.D. Thesis, Chang’an University, 2015(in Chinese).
陈德. 沥青混合料表面构造图像评价方法及抗滑降噪性能预测研究. 博士学位论文, 长安大学, 2015.
4 Puzzo L, Loprencipe G, Tozzo C, et al. Measurement, 2017, 111, 146.
5 Ma T, Tong Z, Zhang Y M, et al. China Journal of Highway and Transport, 2023, 36(3), 70.
马涛, 童峥, 张一鸣, 等. 中国公路学报, 2023, 36(3), 70.
6 Pomoni M, Plati C, Loizos A, et al. International Journal of Pavement Engineering, DOI:10. 1080/10298436. 2020. 1788029.
7 Shi W F, Niu D Y, Li Z, et al. Computer-Aided Civil and Infrastructure Engineering, DOI:10. 1111/mice. 13063.
8 Anfosso-Lédée F, Do M T. Transportation Research Record, 2002, 1806(1), 160.
9 Dong S H, Han S, Zhang Q X, et al. Construction and Building Materials, 2021, 287, 122966.
10 Zhang Z, Luan B, Liu X, et al. Applied Acoustics, 2020, 160, 107120.
11 Fwa T F. International Journal of Transportation Science & Technology, 2017, 6(3), 217.
12 de Leon G, Del Pizzo A, Teti L, et al. Road Materials and Pavement Design, 2020, 21, S91.
13 Del Pizzo A, Teti L, Moro A, et al. Applied Acoustics, 2020, 159, 107080.
14 Fang J M, Tu J S, Wu K M. Advances in Materials Science and Engineering, 2020, 1 (2020), 7427314.
15 Zhou X L, Zhu Y Y, Ran M P, et al. China Journal of Highway and Transport, 2019, 32(4), 187.
周兴林, 祝媛媛, 冉茂平, 等. 中国公路学报, 2019, 32(4), 187.
16 Tong S J, Xie X B, Zhao D Y. China Journal of Highway and Transport, 2016, 29(2), 1.
童申家, 谢祥兵, 赵大勇. 中国公路学报, 2016, 29(2), 1.
17 Yang E H, Chen Q, Li J, et al. China Journal of Highway and Transport, 2023, 36(2), 1.
阳恩慧, 陈强, 李杰, 等. 中国公路学报, 2023, 36(2), 1.
18 Ren W Y. Study on the abrasion characteristic of surface texture and Its effect on noise for asphalt pavements. Ph.D. Thesis, Chang’an University, China, 2019(in Chinese).
任万艳. 沥青路面表面纹理磨耗特性及其对噪声的影响研究. 博士学位论文, 长安大学, 2019.
19 Chen D, Ling C, Wang T, et al. Construction and Building Materials, 2018, 173, 801
20 Wang Y Y. Study on the relationship between sliding resistance of asphalt pavement and its surface rough characteristics. Ph.D. Thesis, Southeast University, 2017 (in Chinese).
王元元. 沥青路面抗滑特性与其表面粗糙特性之关系研究. 博士学位论文, 东南大学, 2017.
21 Wang Y, Yang Z, Liu Y, et al. Road Materials and Pavement Design, 2019, 20(5), 1076.
22 JTG/T 3350-03, Technical Specifications for Design and Construction of Porous Asphalt Pavement. 2020.
JTG/T 3350-03, 排水沥青路面设计与施工技术规范. 2020.
23 Dong S H, Han S, Yin Y Y, et al. Construction and Building Materials, 2021, 312, 125390.
24 Haralick R M, Shanmugam K, Dinstein I H. IEEE Transactions on systems, man, and cybernetics, 1973(6), 610.
25 Miao Y, Wang L, Wang X, et al. International Journal of Pavement Research and Technology, 2015, 8(4), 243.
26 Chen D, Han S, Ling C, et al. China Journal of Highway and Transport, 2017, 30(10), 25.
陈德, 韩森, 凌诚, 等. 中国公路学报, 2017, 30(10), 25.
27 Han S, Liu M, Fwa T F. Road Materials and Pavement Design, 2020, 21(5), 1312.
28 Clausi D A. Canadian Journal of Remote Sensing, 2002, 28(1), 45.
29 Eleyan A, Demirel H. Turkish Journal of Electrical Engineering & Computer ences, 2011, 19(1), 97.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[6] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[7] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[8] 赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
[9] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[10] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[11] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[12] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[13] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[14] 房辰泽, 郭乃胜, 蒋继望, 冷真, 李辉, 陆国阳, 王昊鹏. 加载次序对沥青混合料疲劳损伤累积的影响[J]. 材料导报, 2023, 37(24): 22080209-6.
[15] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed