Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22020138-7    https://doi.org/10.11896/cldb.22020138
  无机非金属及其复合材料 |
沥青胶结料应变延迟恢复特性的动态剪切流变试验表征
兰添晖1, 刘旭2, 贾存兴3, 王凌一3, 张军朝3, 马国伟1, 张默1,*
1 河北工业大学土木与交通学院,天津 300401
2 交通运输部公路科学研究所,北京 100088
3 河北省高速公路京雄筹建处,河北 保定 071799
Delayed Strain Recovery Characterization of Asphalt Binder Based on Dynamic Shear Rheology Test
LAN Tianhui1, LIU Xu2, JIA Cunxing3, WANG Lingyi3, ZHANG Junzhao3, MA Guowei1, ZHANG Mo1,*
1 School of Civil & Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
2 Research Institute of Highway Ministry of Transport, Beijing 100088, China
3 Hebei Province Highway Jingxiong Preparatory Office, Baoding 071799, Hebei, China
下载:  全 文 ( PDF ) ( 7946KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 沥青胶结料在中、高温条件下的变形恢复特性直接影响沥青混合料的抗车辙性能。传统的经验指标(针入度、软化点等)以及一些基于复数模量的力学性能指标在表征沥青的应变延迟恢复特性方面存在不足。本工作基于串联Maxwell模型和并联Kelvin模型所描述的力学行为差异及粘弹性力学参数的频率响应特征,提出了采用相位角频域曲线的斜率来表征沥青胶结料应变延迟恢复特性的方法。本研究综合分析了三种不同针入度水平的基质沥青和两种SBS改性沥青在30~70 ℃下的复数模量和相位角参数,发现相位角频域主曲线相比复数模量主曲线可以更清晰地反映不同类型沥青胶结料的粘弹力学特性差异。试验结果表明,SBS改性沥青的相位角并非如基质沥青随角频率增加单调降低,而是会在特定的温度、频率区间呈现增长趋势。此规律可用于表征沥青胶结料的应变延迟恢复特性,并用于评价材料在特定温度范围的抗车辙性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰添晖
刘旭
贾存兴
王凌一
张军朝
马国伟
张默
关键词:  道路工程  应变延迟恢复  动态剪切流变(DSR)  沥青胶结料  抗车辙性能    
Abstract: The characteristics of deformation recovery of asphalt binder in medium to high temperature conditions affect the rutting resistance of asphalt mixture directly. The traditional empirical indexes (i. e., penetration, softening point, etc.) and certain mechanical performance indexes based on complex modulus have apparent drawbacks in characterizing the delayed strain recovery properties of asphalt. This work proposed a characterization method using the slope of phase angle curves in frequency domain based on the difference of mechanical behavior described by series Maxwell model and parallel Kelvin model and the frequency response characteristics of viscoelastic mechanical parameters. This study comprehensively analyzed the complex moduli and phase angles of three penetration levels of base asphalt and two types of SBS modified asphalt at 30—70 ℃. It was found that the difference in viscoelastic properties of the different types of asphalt binders can be reflected by the master curve of phase angle in frequency domain more clearly than the master curve of complex modulus. The experiment results showed that the phase angle of SBS modified asphalt presents an increase trend in specific temperature and frequency domains, rather than the monotonically decrease trend with the increase of phase angle presented by the base asphalt. This rule can be used to characterize the delayed strain recovery characte-ristics of asphalt binder and to evaluate the rutting resistance of the material in a specific temperature range.
Key words:  road engineering    delayed strain recovery    dynamic shear rheology (DSR)    asphalt binder    rutting resistance
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  U414  
基金资助: 中央级公益性科研院所基本科研业务费专项资金项目(2020-9074);河北省自然科学基金重点项目(E2019202484);河北省重点研发计划项目(20373803D)
通讯作者:  *张默,博士,河北工业大学土木与交通学院副教授、硕士研究生导师。于2011年和2015年在美国伍斯特理工学院获得硕士和博士学位。研究方向为地质聚合物及其复合材料的合成、反应机理和分子动力学模拟,3D打印的固废胶凝材料的合成和性能以及废弃纤维复合材料在水泥基建筑材料中资源化利用研究等。主持国家自然科学基金、中国博士后基金等多项基金项目。发表论文16篇,其中SCI 11篇,EI 3篇,授权中国发明专利4件、美国发明专利1件。mozhang@hebut.edu.cn   
作者简介:  兰添晖,河北工业大学土木与交通学院硕士研究生,在马国伟教授和张默副教授的指导下进行研究。目前主要研究领域为沥青胶浆流变性能研究与废弃纤维复合材料在沥青混合料中的资源化应用。
引用本文:    
兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
LAN Tianhui, LIU Xu, JIA Cunxing, WANG Lingyi, ZHANG Junzhao, MA Guowei, ZHANG Mo. Delayed Strain Recovery Characterization of Asphalt Binder Based on Dynamic Shear Rheology Test. Materials Reports, 2024, 38(4): 22020138-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020138  或          http://www.mater-rep.com/CN/Y2024/V38/I4/22020138
1 Zhang J, Zhang X D, Wang W S. Journal of Highway and Transportation Research and Development, 2020, 37(10), 1 (in Chinese).
张俊, 张晓德, 王文珊. 公路交通科技, 2020, 37(10), 1.
2 Zhu Y, Dave E V, Rahbar-Rastegar R, et al. Road Materials and Pavement Design, 2017, 18, 467.
3 Hou Z M. Transpo World, 2021(24), 2 (in Chinese).
侯泽明. 交通世界, 2021(24), 2.
4 Zhang K, Xie L E, Zhang Z Q. Journal of Materials Science and Enginee-ring, 2019, 37(4), 604 (in Chinese).
张苛, 谢玲儿, 张争奇. 材料科学与工程学报, 2019, 37(4), 604.
5 Li S R, Lin Q, Dong S X. Polymer Bulletin, 2008(5), 14 (in Chinese).
李双瑞, 林青, 董声雄. 高分子通报, 2008(5), 14.
6 Meng X Y. Research on evaluation method of anti-rutting performance of asphalt mortar. Master’s Thesis, Dalian University of Technology, China, 2020 (in Chinese).
孟祥宇. 沥青胶浆抗车辙性能评价方法研究. 硕士学位论文, 大连理工大学, 2020.
7 Zhou Z G, Chen G H, Zhang H B, et al. Journal of Changsha University of Science and Technology, 2020, 17(2), 1 (in Chinese).
周志刚, 陈功鸿, 张红波, 等. 长沙理工大学学报, 2020, 17(2), 1.
8 Wang C J, Zhang X Y, Yang P W, et al. China Building Materials Science and Technology, 2020, 29(4), 40 (in Chinese).
王朝军, 张星宇, 杨平文, 等. 中国建材科技, 2020, 29(4), 40.
9 Bahia H U, Anderson D A. Journal of the Transportation Research Board, 1995, 1488, 32.
10 Li X C. In:the 7th Annual conference of Maintenance and Management Branch of China Highway Society. Xi’an, 2017, pp. 394 (in Chinese).
李笑尘. 中国公路学会养护与管理分会第七届学术年会. 西安, 2017, pp. 394.
11 AASHTO. T315-08, Washington, DC, 2008.
12 Shenoy A. Applied Rheology, 2004, 14(6), 303.
13 Delgadillo R, Cho D W, Bahia H. Journal of the Transportation Research Board, 2006, 1962(1), 2.
14 AASHTO. T350-14, Washington, DC, 2014.
15 D’angelo J A. Road Materials and Pavement Design, 2009, 10, 61.
16 D’angelo J, Kluttz R, Dongre R N, et al. Journal of the Association of Asphalt Paving Technologists, 2007, 76, 123.
17 Delgadillo R, Bahia H U, Lakes R. Materials and Structures, 2012, 45(3), 457.
18 Zhao K C, Wang Y H, Yang Z, et al. Journal of Highway and Transportation Research and Development, 2021, 38(5), 10 (in Chinese).
赵可成, 王予红, 杨震, 等. 公路交通科技, 2021, 38(5), 10.
19 Zhao W H, Xie X B, Li G H, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(11), 322 (in Chinese).
赵文辉, 谢祥兵, 李广慧, 等. 硅酸盐通报, 2020, 39(11), 322.
20 Lin W J. Research on the performances of crumb rubber composite modified asphalt based on rheological properties. Master’s Thesis, South China University of Technology,China, 2020 (in Chinese).
林伟杰. 基于流变特性的橡胶复合改性沥青性能研究. 硕士学位论文, 华南理工大学, 2020.
21 Schwartz C, Gibson N, Schapery R. Journal of the Transportation Research Board, 2002, 1789, 101.
22 Behnood A, Olek J. Construction and Building Materials, 2017, 151, 464.
23 Fan S P, Zhu H Z, Zhong W M. Journal of Building Materials, 2021, 25(3), 320 (in Chinese).
范世平, 朱洪洲, 钟伟明. 建筑材料学报, 2021, 25(3), 320.
24 Yu Q, Zhao B, Yi K, et al. Journal of Wuhan University of Technology, 2021(5), 920 (in Chinese).
余琦, 赵兵, 易凯, 等. 武汉理工大学学报, 2021(5), 920.
25 Yang T Q, Luo W B, Xu P, et al. Viscoelastic theory and application, Science Press, China, 2004, pp.33 (in Chinese).
杨挺青, 罗文波, 徐平, 等. 黏弹性理论与应用, 科学出版社, 2004, pp.33.
26 Liu X, Zhang M, Shao L, et al. Construction and Building Materials, 2018, 190, 495.
27 Airey G D. Rheological characteristics of polymer modified and aged bitumens. Ph. D. Thesis, University of Nottingham, UK, 1997.
28 Hervé D B, François O, Cédric S, et al. Road Materials and Pavement Design, 2004, 5, 163.
29 Xu W, Pan M J, Zhang K, et al. Journal of Wuhan University of Technology, 2021, 45(5), 939 (in Chinese).
徐文, 潘梅娟, 张恺, 等. 武汉理工大学学报, 2021, 45(5), 939.
30 Zhou H Y, Zhang L. Journal of Highway and Transportation Research and Development, 2021, 38(1), 10 (in Chinese).
周焕云, 张磊. 公路交通科技, 2021, 38(1), 10.
31 Mao S P, Huang H H, Bo P, et al. Science Technology and Engineering, 2021, 21(13), 5518 (in Chinese).
毛三鹏, 黄宏海, 薄鹏, 等. 科学技术与工程, 2021, 21(13), 5518.
32 Gao Y. Synthetic Materials Aging and Application, 2021, 50(2), 67 (in Chinese).
高运. 合成材料老化与应用, 2021, 50(2), 67.
33 Cheng P F, Tong T Y. Journal of Wuhan University, 2021, 54(10), 927(in Chinese).
程培峰, 佟天宇. 武汉大学学报, 2021, 54(10), 927.
[1] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[2] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[3] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[4] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[5] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[6] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[7] 房辰泽, 郭乃胜, 蒋继望, 冷真, 李辉, 陆国阳, 王昊鹏. 加载次序对沥青混合料疲劳损伤累积的影响[J]. 材料导报, 2023, 37(24): 22080209-6.
[8] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[9] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[10] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[11] 冯云霞, 罗钰鸿, 牛开民, 郭鹏. 盐及环境耦合作用下沥青和混合料性能劣化规律及机理研究进展[J]. 材料导报, 2023, 37(13): 22050114-10.
[12] 孙思威, 金鑫, 邓昌宁, 郭乃胜, 余耀威. 基于分形理论的蓄能自发光道路标线涂料性能预测模型研究[J]. 材料导报, 2022, 36(Z1): 20110256-7.
[13] 程培峰, 杨宗昊, 张展铭, 徐进. 热老化下纳米蒙脱土/SBS复合改性沥青愈合性能及微观机制分析[J]. 材料导报, 2022, 36(9): 21020100-6.
[14] 张永军, 罗文波. 重复荷载下玄武岩纤维沥青混合料的永久变形及其分数阶黏弹塑性模型[J]. 材料导报, 2022, 36(9): 21020108-7.
[15] 王志臣, 郭乃胜, 金鑫, 于安康. 煤矸石粉与沥青的交互作用评价及其微观机理研究[J]. 材料导报, 2022, 36(22): 21040248-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed