Please wait a minute...
材料导报  2024, Vol. 38 Issue (15): 23020088-7    https://doi.org/10.11896/cldb.23020088
  无机非金属及其复合材料 |
长余辉水性道面标线涂料的制备与路用性能
赵晓康1, 张久鹏1, 胡勤石1, 裴建中1,*, 程科2, 张柳1
1 长安大学公路学院, 西安 710064
2 西安咸阳国际机场股份有限公司,陕西 咸阳 712000
Preparation and Pavement Performance of Long Afterglow Waterborne Marking Paint
ZHAO Xiaokang1, ZHANG Jiupeng1, HU Qinshi1, PEI Jianzhong1,*, CHENG Ke2, ZHANG Liu1
1 School of Highway, Chang'an University, Xi'an 710064, China
2 Xi'an Xianyang International Airport Co., Ltd., Xianyang 712000, Shaanxi, China
下载:  全 文 ( PDF ) ( 13165KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本工作以SrAl2O4:Eu2+,Dy3+类蓄能发光粉为发光基体,采用双硅膜复合改性技术进行覆膜保护处理,然后调配制成长余辉水性标线涂料,并通过漆膜试验和路用性能测试,对制备涂料的使用性能进行了综合评估。结果表明,以硅丙乳液为基料、六偏磷酸钠为分散剂、甲基纤维素钠为防沉剂,水基比为33%,可以制得涂膜性能与发光效果俱佳的水性发光涂料。成型涂膜表干时间为1.4 h,硬度可达2H,耐水性、耐酸性24 h无异常,在40%的氢氧化钠溶液中漆膜稍有变色,耐热性、耐寒性没有异常情况,附着力可达2级;标线涂膜厚度优选为0.33 mm。路用性能表征结果表明,涂覆水性发光涂料标线后,路面抗滑值为88 BPN,界面粘附性可达2.72 MPa,15 ℃常温耐水性24 h无异常,不粘胎干燥时间为10 min,余晖时间为12.5 h,可基本满足路面涂料的使用性能要求,但长期的80 ℃高温或常温弱碱环境会对涂料发光性能产生一定的损伤。本工作为长余辉路面标线涂料的开发提供了技术参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵晓康
张久鹏
胡勤石
裴建中
程科
张柳
关键词:  道路工程  长余辉  水性标线涂料  涂膜性能  路用性能    
Abstract: In this work, the SrAl2O4:Eu2+, Dy3+ luminescent powder was used as the coating matrix, the shell was treated with the double silicon coa-ting modification technology, and the long afterglow waterborne marking paint was prepared. Then the paint film test and road performance test were carried out, and the performance of the marking paint was evaluated comprehensively. The results show that a waterborne luminescent paint with excellent film performance and luminous effect can be prepared by using silica-propyl emulsion as the base material, sodium hexametaphosphate as a dispersant, and sodium methylcellulose as an anti-sedimentation agent with a water-base ratio of 33%. The marking coating obtained a surface drying time of 1.4 h and a hardness of 2H. The water resistance and acid resistance both of coatings were normal after soaking for 24 hours, the paint discolored slightly after soaking in 40% sodium hydroxide solution. Its high and low-temperature resistance was excellent. The adhesion could reach 2-level. The marking film thickness is preferably 0.33 mm. The results of road performance showed that the British Pendulum Number of the pavement coated with waterborne luminescent paint was 88 BPN. The interfacial adhesion of coating-pavement could reach 2.72 MPa. The non-stick tire drying time was 10 min, and the afterglow time was 12.5 h. Soaking in water at 15 ℃ for 24 h, the appea-rance of the marking film was normal, which can meet the performance requirements of pavement marking. However, the long-term high tempe-rature of 80 ℃ or the weak alkali environment at normal temperature will cause certain damage to the luminescence performance of coatings. Ho-wever, long-term high temperature of 80 ℃ or a weak alkali environment will cause certain damage to the luminescent properties of coatings. The research provides technical references for the development of long afterglow pavement marking paint.
Key words:  road engineering    long afterglow    waterborne marking paint    paint film performance    road performance
出版日期:  2024-08-10      发布日期:  2024-08-29
ZTFLH:  U416.214  
基金资助: 国家自然科学基金(52178408);西安咸阳国际机场创新项目(CWAG-XY-2022-FW-0299)
通讯作者:  * 裴建中,长安大学公路学院教授、博士研究生导师。2004年获长安大学道路与铁工程博士学位。目前主要从事沥青路面结构与材料的基础理论及工程应用研究。发表论文100余篇,包括Journal of Cleaner Production、Construction and Building Materials、Journal of Materials in Civil Engineering、《中国公路学报》《材料导报》等。jianzhongpei@163.com   
作者简介:  赵晓康,长安大学公路学院讲师、硕士研究生导师。2022年东南大学交通运输工程专业博士毕业,现任职于长安大学公路学院。目前主要从事耐久性路面与机场道面材料等方面的研究工作。发表论文20余篇,包括Construction and Building Materials、Road Materials and Pavement Design、International Journal of Pavement Engineering、Journal of Cleaner Production、《中国公路学报》《中南大学学报》《东南大学学报》《哈尔滨工业大学学报》《吉林大学学报》等。
引用本文:    
赵晓康, 张久鹏, 胡勤石, 裴建中, 程科, 张柳. 长余辉水性道面标线涂料的制备与路用性能[J]. 材料导报, 2024, 38(15): 23020088-7.
ZHAO Xiaokang, ZHANG Jiupeng, HU Qinshi, PEI Jianzhong, CHENG Ke, ZHANG Liu. Preparation and Pavement Performance of Long Afterglow Waterborne Marking Paint. Materials Reports, 2024, 38(15): 23020088-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020088  或          http://www.mater-rep.com/CN/Y2024/V38/I15/23020088
1 Dwyer C, Himes S. Transportation Research Record, 2022, 2677(1), 981.
2 Editorial Department of China Journal of Highway and Transport. China Journal of Highway and Transport, 2016, 29(6), 1(in Chinese).
《中国公路学报》编辑部. 中国公路学报, 2016, 29(6), 1.
3 Li Ru. The analysis of aircraft operation safety in complex airport. Master’s Thesis, Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
李茹. 复杂机场航空器场面运行安全分析. 硕士学位论文, 南京航空航天大学, 2015.
4 Zhang Huaizhi, Jin Xin, Li Heng, et al. Materials Reports, 2023, 37(12), 21120002(in Chinese).
张怀志, 金鑫, 黎享, 等. 材料导报, 2023, 37(12), 21120002.
5 Feng Yu, Ma Pengrui, Jiang Shaobo, et al. Journal of Municipal Technology, 2022, 40(9), 64 (in Chinese).
冯宇, 马鹏蕊, 蒋少波, et al. 市政技术, 2022, 40(9), 64.
6 He Rui, Liang Yingping, Xie Ruisong, et al. Journal of Chang'an University (Natural Science Edition), 2022, 42(3), 1(in Chinese).
何锐, 梁映平, 解瑞松, 等. 长安大学学报(自然科学版), 2022, 42(3), 1.
7 Pashkevich A, Bartusiak J, Akowska L, et al. Transportation Research Procedia, 2020, 45, 530.
8 Sun Siwei, Wang Xiguang, Liu Nan, et al. Science and Technology Innovation Herald, 2021, 18(6), 10(in Chinese).
孙思威, 王曦光, 刘楠, 等. 科技创新导报, 2021, 18(6), 10.
9 Zhang Pan, Bai Yuxing, Wu Li, et al. Chinese Journal of Luminescence, 2022, 43(9), 1361(in Chinese).
张盼, 白宇星, 武莉, 等. 发光学报, 2022, 43(9), 1361.
10 Zhuang J Q, Xia Z G, Liu H K, et al. Applied Surface Science, 2011, 257(9), 4350.
11 Zhang Li, Hu Jianwei, Feng Mengli, et al. New Chemical Materials, 2022, 50(3), 54 (in Chinese).
张丽, 胡建伟, 冯蒙丽, 等. 化工新型材料, 2022, 50(3), 54.
12 Hu Liqun, Zhao Lisha, Yang Zheng. Journal of Chang'an University (Natural Science Edition), 2022, 42(3), 79(in Chinese).
胡力群, 赵莉莎, 杨政. 长安大学学报(自然科学版), 2022, 42(3), 79.
13 Zhang Liu, Pei Jianzhong, Li Rui. China Resources Comprehensive Utilization, 2018, 36(2), 25(in Chinese).
张柳, 裴建中, 李蕊. 中国资源综合利用, 2018, 36(2), 25.
14 Kim T H, Hwang H J, Kim J H, et al. Journal of the Korean Crystal Growth and Crystal Technology, 2016, 26(5), 193.
15 Sun Siwei, Jin Xin, Deng Changning, et al. Materials Reports, 2022, 36(S1), 204 (in Chinese).
孙思威, 金鑫, 邓昌宁, 等. 材料导报, 2022, 36(S1), 204.
16 Li Songkun, Wang Xiaoping, Wang Lijun, et al. Materials Reports, 2014, 28(5), 63 (in Chinese).
李松坤, 王小平, 王丽军, 等. 材料导报, 2014, 28(5), 63.
17 LI Qi. Modern Chemical Industry, 2017, 37(12), 79 (in Chinese).
李祁. 现代化工, 2017, 37(12), 79.
18 Lei L, Chen Y, Yu L, et al. Materials, 2020, 13(2), 426.
19 Kim T H, Hwang H J, Jinho K, et al. Korean Journal of Materials Research, 2016, 26(10), 561.
20 Li Y, Gecevicius M, Qiu J R. Chemical Society Reviews, 2016, 45(8), 2090.
21 Huang Weixing, Zeng Heping, Yu Li, et al. Journal of South China Normal University (Natural Science Edition), 2011(3), 66(in Chinese).
黄韦星, 曾和平, 余力, 等. 华南师范大学学报(自然科学版), 2011(3), 66.
22 Zeng P, Wei X T, Yin M, et al. Journal of Luminescence, 2018, 199, 400.
23 Li R F, Ye J W, Wang J H, et al. Advanced Materials Research, 2008, 58, 199.
24 Jinho K, Lee S Y, Kim T H, et al. Journal of the Korean Ceramic Society, 2014, 51(6), 618.
25 Zhang J Y, Zhang Z T, Tang Z L, et al. Materials Science Forum, 2003, 423, 147.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[6] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[7] 关博文, 张硕文, 吴佳育, 王发平, 陈晓堃. 基于残余砂浆附着特征的再生混凝土硫酸盐传输模型[J]. 材料导报, 2024, 38(15): 23040046-8.
[8] 张庆宇, 罗京, 赵毅, 刘英, 张新永. 微波加热集料的传热特性及其影响因素[J]. 材料导报, 2023, 37(8): 21110074-8.
[9] 王梦浩, 王朝辉, 高璇, 高峰, 肖绪荡. 公路路面乳化沥青冷再生技术综述[J]. 材料导报, 2023, 37(7): 21080241-11.
[10] 张新强, 唐伯明, 曹雪娟, 杨晓宇, 唐乃膨, 朱洪洲. 道路沥青材料VOCs释放特性与抑制措施研究进展[J]. 材料导报, 2023, 37(6): 21070149-9.
[11] 王育华, 冯鹏, 丁松松, 马西麟, 曹君龙, 张泓喆, 李根, 郭海洁. 长余辉材料的设计及机理研究进展[J]. 材料导报, 2023, 37(3): 22110279-13.
[12] 房辰泽, 郭乃胜, 蒋继望, 冷真, 李辉, 陆国阳, 王昊鹏. 加载次序对沥青混合料疲劳损伤累积的影响[J]. 材料导报, 2023, 37(24): 22080209-6.
[13] 栾利强, 文双寿, 余和德, 任俊颖. 碳纳米管改性沥青混合料低温裂缝扩展分析[J]. 材料导报, 2023, 37(20): 22030145-7.
[14] 郭乃胜, 于安康, 王志臣, 房辰泽. 基于吸附沥青膜厚度的沥青与矿粉交互作用能力评价研究[J]. 材料导报, 2023, 37(17): 22010049-8.
[15] 殷鹏, 潘宝峰, 康泽华, 王宝民. 稻壳灰改性沥青混合料性能研究及路面结构动力响应分析[J]. 材料导报, 2023, 37(14): 21120046-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed